ЛИТЕРАТУРА

1. Беляева М. И. // Всесоюзный съезд офтальмологов, 5-й:

Тезисы докладов. — М., 1979. — Т. 3. — С. 110—112. Глинчук Я. И., Шамсиев А. С., Югай А. Г. // Офтальмохирургия. — 1990. — № 3. — С. 48—52.

3. Древаль А. В. // Вопр. питания. — 1991. — № 3. — С. 21—54. 4. Ефилов А. С. Диабетические ангиопатии. — М., 1989. —

5. Нестеров А. П. // Всероссийский съезд эндокринологов,

3-й: Тезисы докладов. — М., 1996. — С. 78. 6. Симонова К. К., Елисеева Э. Г., Переверзина О. К. // Лазерные методы лечения в офтальмологии. - М., 1983. -C. 105-113.

Blankenship G. W. // Ophthalmology. — 1991. — Vol. 98, N 2. — P. 125—128.

8. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study

Research Group // Ibid. — N 5. — P. 766—785. Francois J. // Ophthalmology. — 1979. — Vol. 173, N 1. — P. 28-39.

10. Fucuda M. // Diabet. Res. Clin. Pract. — 1994. — Vol. 24. — P. 171-176.

11. Gardner T. W., Eller A. W., Friberg T. R. // Graefes Arch. clin. exp. Ophthalmol. — 1991. — Vol. 229, N 4. — P. 323—328.

Kohner E. M., Patel V., Rassam S. M. // Diabetes. — 1995.
 Vol. 44, N 6. — P. 603—607.

L'Esperance F. A. // Trans. Amer. Acad. Ophthalmol. Otolaryngol. — 1977. — Vol. 7. — P. 6—24.

Machmer R., Blankenship G. // Ophthalmology. — 1981. — Vol. 88, N 7. — P. 643—646.

15. Massin-Korobelnik P., Gaudric A. // Diabet. Metab. - 1993. -Vol. 19, N 5. — P. 405—413

Meyer-Schwickerath G., Gerke E. // Acta ophthalmol. — 1983. — Vol. 31, N 5. — P. 756—768.

17. Michels R. G. Vitreous Surgery. — St. Louis, 1981. — P. 135— 199

Rogell G. // Retina. — 1983. — N 4. — P. 304—311.
 Seiberth V., Alexandridis E. // Ophthalmologica. — 1991. — Vol. 202, N 1. — P. 10—17.
 Seiberth V., Schatanek S., Alexandridis E. // Graefes Arch. clin. exp. Ophthalmol. — 1993. — Vol. 231, N 6. — P. 318—322.

21. Theodossiadis G. P., Boudouri A., Georgopoulos G., Koutsandrea C. // Ophthalmologica. — 1990. — Vol. 201, N 2. — P. 71—78.

Поступила 24.12.97

© КОЛЛЕКТИВ АВТОРОВ, 1998

УДК 616.61-02:616.379-008.641-079.3:575

Я. Ю. Кондратьев, Л. А. Чугунова, М. Ш. Шамхалова, М. В. Шестакова, Л. М. Демуров, Д. А. Чистяков, О. К. Викулова, В. В. Носиков, И. И. Дедов

ПОЛИМОРФИЗМ ГЕНА АНГИОТЕНЗИНПРЕВРАЩАЮЩЕГО ФЕРМЕНТА И ГЕНЕТИЧЕСКАЯ ПРЕДРАСПОЛОЖЕННОСТЬ К ДИАБЕТИЧЕСКОЙ НЕФРОПАТИИ ПРИ ИНСУЛИНЗАВИСИМОМ САХАРНОМ ДИАБЕТЕ

Эндокринологический научный центр (дир. — акад. РАМН И. И. Дедов) РАМН и Государственный научный центр РФ "ГосНИИ генетика" (дир. — член-корр. РАН В. Г. Дебабов), Москва

При изучении генетической предрасположенности к диабетической нефропатии (ДН) у больных инсулинзависимым сахарным диабетом использовали подход "случайконтроль", а в качестве генетического маркера — полиморфизм типа "вставка/отсутствие вставки" (insertion/deletion, I/D) гена ангиотензинпревращающего фермента (angiotensin I-converting enzyme, ACE). Больные с длительностью диабета менее 15 лет и клинической протеинурией составили группу "случай" (фенотип ДH+; n=14), больные с длительностью диабета более 20 лет без протеинурии служили группой "контроль" (фенотип ДН-; n = 31). Между группами "случай" и "контроль" найдены достоверные различия в распределении аллелей I и D гена АСЕ и их генотипов (II, ID и DD), что позволяет считать этот полиморфный маркер одним из генетических факторов риска ДН. Аллель І проявлял дозозависимый защитный эффект в отношении ДН (максимальный — у носителей гомозиготного генотипа II). Пол больных, уровень компенсации углеводного обмена и артериальная гипертензия также интерферировали с генотипами гена АСЕ в формировании клинического фенотипа ДН. Использование "крайних" вариантов фенотипа ДН позволило снизить маскирующее влияние негенетических факторов риска и выявить генетический компонент в этиопатогенезе этой многофакторной ангиопатии.

Insertion/deletion (ID) polymorphism of angiotensin I converting enzyme (ACE) as a potential marker of genetic susceptibility to diabetic nephropathy (DN) is studied in 45 insulin-dependent diabetic patients and 168 healthy subjects from the general Moscow population. Fourteen proteinuric patients with relatively short diabetes duration (<15 years) and 31 patients with a longer diabetes duration (>20 years) without clinical signs of DN were the "case" (DN+) and control (DN-) groups, respectively. The DN+ group virtually did not differ from healthy subjects in the ID/ACE allele and genotype distribution, whereas in the DN- and healthy controls and, more so, in the DN+ and DN- groups the incidence of this polymorphic marker differed significantly, and hence, it can be considered as a genetic risk factor for DN. Allele I had a dose-dependent protective effect with regard to DN (maximal in the carriers of homozygotic genotype II). Such non-genetic risk factors as glycemic control, diastolic blood pressure, and sex of patients interfere with ID/ACE polymorphism and contribute to susceptibility to DN in a synergistic or antagonistic manner. Use of the "extreme" variants of DN phenotype helped decrease the masking effect of non-genetic risk factors and detect the genetic component in the etiology and pathogenesis of this multifactorial angiopathy.

Диабетическая нефропатия (ДН) — одно из самых тяжелых осложнений сахарного диабета является клинически гетерогенной и этиологически многофакторной ангиопатией. И хотя бесспорным лидером среди множества факторов риска ДН остается гипергликемия, развитие ДН и скорость ее прогрессирования далеко не всегда коррелируют со степенью компенсации углевод-

ного обмена, длительностью диабета и проводимой терапией. Результаты эпидемиологических исследований свидетельствуют о важной роли генетических факторов в этиологии ДН [5, 19, 24]. Сегодня стала возможной идентификация генетических факторов риска ДН благодаря накоплению данных о структурной организации генома человека и обнаружению в нем полиморфных маркеров, часть которых связана с "генами-кандидата-ми" (т. е. генами, белковые продукты которых мо-

гут участвовать в развитии патологии).

В регуляции общей и локальной (в том числе почечной) гемодинамики важную роль играют гены, кодирующие такие компоненты ренин-ангиотензиновой системы, как ангиотензиноген, ангиотензин I-превращающий фермент (АПФ) и сосудистый (тип 1) рецептор ангиотензина II. Из них особого внимания заслуживает ген АПФ (общепринятое обозначение гена — ACE, от "angiotensin I-converting enzyme") из-за ассоциации одного из своих полиморфных маркеров с уровнем фермента в крови [16, 23] и растущей популярности ингибиторов АПФ среди врачей-диабетологов [26].

В 1994 г. появились первые сообщения об ассоциации двух полиморфных маркеров гена АСЕ с ДН у больных инсулинзависимым сахарным диабетом (ИЗСД) [9, 13]. Вскоре, однако, последовали работы, не подтвердившие связи одного из этих полиморфных маркеров (типа "вставка/отсутствие вставки" — "insertion/deletion", аллели I и D) гена АСЕ с ДН [8, 15, 18, 22]. Разумным объяснением такого противоречия могут быть неоднородность сравниваемых групп больных, различия в критериях их отбора по фенотипу ДН [7], расовые и этнические вариации в распределении частот встречаемости генетического маркера [2, 6, 11, 18] и в генетической регуляции активности фермента [4], а также в распространенности ДН и особенностях ее клинического течения [21].

Для снижения маскирующего влияния негенетических факторов риска и выявления генетического компонента в этиопатогенезе ДН мы изучали распределение частот встречаемости аллелей и генотипов гена АСЕ у больных ИЗСД с наличием и отсутствием ДН, используя метод "случай—контроль" ("патология—отсутствие патологии"). Для формирования групп с клиническими фенотипами нефропатии (ДН+, "случай") и ее отсутствия (ДН-, "контроль") использовали специальные, неперекрывающиеся критерии отбора больных.

Материалы и методы

Обследовано 45 больных ИЗСД с возрастом манифестации до 20 лет. В зависимости от длительности диабета и наличия клинической протеинурии (альбуминурия ≥ 300 мг/сут) больные были разделены на 2 подгруппы: ДH+ (n=14; длительность ИЗСД ≤ 15 лет; протеинурия) и ДН- (n = 31; длительность ИЗСД ≥ 20 лет; альбуминурия ≤ 200 мг/сут). Для оценки текущего нарушения углеводного обмена как метаболического фактора риска ДН у всех больных определяли уровень (в %) неферментативно гликированного гемоглобина (фракцию А1) с помощью ионообменной хроматографии на биохимическом анализаторе "Abbott Spectrum" ("Abbott Laboratories", США). На этом же приборе нефелометрическим методом определяли содержание альбумина. Популяционным контролем служила случайная выборка доноров (n = 168) из травматологических отделений Москвы без сахарного диабета и хронических системных заболеваний в анамнезе [1].

Выделение геномной ДНК из венозной крови обследуемых осуществляли методом фенол-хлоро-

формной экстракции [10] или с использованием хелатного полимера Chelex®—100 ("Bio-Rad", США) [25]. Амплификацию полиморфного участка гена АСЕ проводили с помощью полимеразной цепной реакции, как описано ранее [1, 17], на амплификаторе PHC-2 ("Techne", Великобритания) или "PolyChainII" ("Polygen", Германия). Продукты полимеразной цепной реакции разделяли с помощью электрофереза в 2% агарозном геле. Гель окращивали бромидом этидия. В работе использовали термостабильную ДНК-полимеразу Таq, полученную от НПО "Биотех" (Москва). Синтетические олигонуклеотиды получены от В. П. Вейко (ГНЦ РФ "ГосНИИ генетика").

Сравнение частот встречаемости аллелей и генотипов гена АСЕ в различных группах обследованных проводили с использованием точного критерия Фишера, для определения достоверности различий клинико-лабораторных данных в парных группах применяли t-критерий. Статистически значимыми считали различия при p < 0.05. Интерференцию генетических и негенетических факторов риска оценивали с помощью регрессионного анализа.

Результаты и их обсуждение

Для изучения генетической предрасположенности или устойчивости к ДН мы использовали один из наиболее распространенных подходов установление ассоциации полиморфного маркера (аллеля или генотипа) с фенотипом патологии, где под ассоциацией генетического маркера с заболеванием понимают достоверно различающуюся частоту встречаемости этого маркера у больных и здоровых лиц одной и той же популяции. Изучение генетической предрасположенности к развитию этиологически многофакторной ДН затруднено многими обстоятельствами, что находит отражение в противоречивости данных об ассоциации полиморфизма типа I/D гена ACE с этой ангиопатией при ИЗСД в разных популяциях [8, 9, 13, 15, 18, 22]. Во-первых, относительный вклад генетического компонента может быть незначительным и перекрываться метаболическими факторами риска, во-вторых, в ассоциативных исследованиях необходимо использовать для сравнения четкие фенотипы "случай" и "контроль". Последнее в отношении нефропатии сделать непросто, поскольку фенотип ДН+ не является дискретным, а представляет собой непрерывный ряд в различной степени выраженных структурнофункциональных нарушений фильтрующего аппарата почек. По одной из распространенных классификаций, ДН включает в себя несколько последовательных стадий, с увеличением длительности ИЗСД постепенно переходящих одна в другую [14], что делает выбор отправной точки для определения фенотипа ДН (так называемой точки разделения фенотипов "случай" и "контроль") достаточно субъективным. Важнейшим, помимо длительности диабета, фактором риска ДН является также плохая компенсация углеводного обмена, интенсивность и продолжительность воздействия которой в основном и определяют развитие ангиопатии [12].

Таблица 3

Общая характеристика обследованных больных ИЗСД с наличием (ДН+) и отсутствием (ДН—) ДН (среднее \pm δ)

Показатель	ДН+ (n = 14)	ДН- (n = 31)	p
Пол, м/ж	5/9	9/22	*
Возраст начала ИЗСД, годы	9.9 ± 4.1	$11,2 \pm 5,8$	**
Длительность ИЗСД, годы	$11,8 \pm 2,2$	$27,5 \pm 8,2$	< 0,0005
Уровень Hb A ₁ , %	12.0 ± 2.2	$11,4 \pm 2.6$	*

Примечание. Здесь и в табл. 2: * — различия недостоверны (p > 0.05).

Чтобы свести к минимуму влияние перечисленных выше негенетических факторов риска ДН, мы в качестве группы "случай" (ДН+) выбрали больных с относительно короткой продолжительностью ИЗСД (< 15 лет) и четко выраженным фенотипом нефропатии (с клинической протеинурией), тогда как группу "контроль" (ДН-) составили больные с гораздо большей длительностью ИЗСД (> 20 лет), но без выраженной нефропатии (с нормо- и микроальбуминурией). По степени же текущей компенсации углеводного обмена обе группы практически не различались (табл. 1), хотя при нефропатии средний уровень Нь А₁ был несколько выше. Кроме того, этот показатель отражает степень компенсации углеводного обмена лишь за последние 3 мес (период полужизни эритроцитов и обмена суммарного гемоглобина) и не может быть экстраполирован на более ранние периоды течения ИЗСД.

В сформированных таким образом группах "случай" (n = 14) и "контроль" (n = 31) были выявлены достоверные различия в распределении аллелей и генотипов гена АСЕ (табл. 2). Обращает на себя внимание тот факт, что группа с быстро развившейся нефропатией (ДН+) достоверно не различалась от общего популяционного контроля, хотя в ней и наблюдалось перераспределение аллелей в сторону уменьшения частоты встречаемости аллеля I и увеличения аллелей D (по данным литературы, предрасполагающего к сосудистым патологиям вообще). Это перераспределение аллелей происходило за счет возрастания доли носителей гетерозиготного генотипа ID (генотип II не выявлен вообще), тогда как распространенность генотипа DD практически не отличалась от таковой у здоровых лиц. Напротив, группа боль-

Распространенность (в %) аллелей и генотипов гена АСЕ в общей популяции и у больных ИЗСД с наличием (ДН+) и отсутствием (ДН-) ДН

Генетический маркер	Обшая популя- ция (n = 168) (1)	ДН+ (n = 14) (2)	ДН- (n = 31) (3)	P ₁₋₂	P ₁₋₃	p ₂₋₃
Аллель I	36	25	51,6	*	< 0,02	< 0,02
Аллель D	64	75	48,4	ajc	< 0.02	< 0,02
Генотип II	19,7	0	25,8	10t	*	< 0.05
Генотип ID	32,7	50	51,6	*	< 0.05	*
Генотип DD	47,6	50	22,6	alc	< 0.01	*

ных с длительным течением ИЗСД без нефропатии (ДН-) заметно отличалась от популяционного контроля как общим накоплением аллеля I и снижением распространенности аллеля D, так и перераспределением генотипов гена АСЕ (также выраженным в увеличении гетерозиготности, но уже за счет уменьшения доли генотипа DD и увеличения доли генотипа II).

При сравнении групп ДН+ и ДН— между собой найдены более существенные различия в распределении аллелей и генотипов гена АСЕ, чем при сравнении каждой из этих групп с группой здоровых доноров общей популяции. Недостоверность же различий в распределении генотипов ID и DD объясняется лишь малой величиной выборок "случай" (ДН+; n = 14) и "контроль" (ДН—; n = 31). Тем не менее полученные данные подтвердили сделанный нами ранее на значительно меньшей выборке (n = 7 и 13 соответственно) вывод об ассоциации этого полиморфного маркера с ДН у больных ИЗСД в русской популяции [11].

Важным наблюдением явилось отсутствие существенных различий в распространенности генотипа DD между популяционным контролем и больными ИЗСД с быстро развившейся нефропатией (группа ДН+). Основное различие между этими группами заключается в перераспределении аллеля I— от уменьшения гомозиготности в сторону увеличения гетерозиготности. Напротив, при длительном ИЗСД и устойчивости к нефропатии (группа "ДН—") при почти такой же, как в группе "ДН+", доле носителей гетерозиготного генотипа ID доля носителей гомозиготного генотипа II была достоверно выше. Это может свидетельствовать не только и не столько о наличии предрасполагающего к раннему развитию ДН аллеля D (осо-

Результаты регрессионного анализа различных показателей у больных ИЗСД с наличием и отсутствием ДН

Множественная регрессия Переменная	Корреляции (<i>R</i>)						
	генотип	пол	отношение к ДН (+/-)	возраст начала ИЗСД	длительность ИЗСД	Hb A ₁	
Генотип	1,00	0,06	0,36*	-0,39*	-0,25	-0,17	
Пол	0,06	1,00	-0.07	0,18	-0.10	-0.02	
Отношение к ДН (+/-)	0,36*	-0.07	1,00	-0.11	-0,73**	0,12	
Возраст начала ИЗСД	-0,39*	0,18	-0,11	1,00	0,05	-0,25	
Длительность ИЗСД	-0.25	-0,10	-0,73**	-0.05	1,00	0,05	
Hb A ₁	-0.17	-0.02	0,12	-0.25	0,05	1,00	

Примечание. Звездочки — достоверность различий: одна — при p < 0.05; две — при p < 0.001.

бенно гомозиготности по нему), сколько о защитной роли аллеля I и его гомозиготного генотипа.

Проведенный регрессионный анализ показал также, что между генотипами гена АСЕ, полом больных, возрастом начала ИЗСД, компенсацией углеводного обмена, альбуминурией, артериальным давлением и развитием ДН существует определенная зависимость (R = 0.37; p < 0.05). Отношения между некоторыми из указанных параметров в виде корреляционных связей приведены в табл. 3. Этот анализ подтвердил предположение о дозовом защитном эффекте аллеля І гена АСЕ (0 в генотипе DD, 1 - в генотипе ID и 2 - в генотипе II), причем у женщин эффект выражен сильнее. В отношении предрасположенности или устойчивости к ДН нами также отмечен синергизм между определенными генотипами гена ACE, Hb A₁, альбуминурией, артериальным давлением (особенно диастолическим) и полом больного ИЗСД. Последнее представляет особый интерес и требует специального изучения, поскольку эстрогены, повидимому, сами обладают ангиопротективными свойствами, а артериальная гипертензия не только ассоциирована с сахарным диабетом и неблагоприятным прогнозом в отношении ДН, но и является независимым фактором риска повышенной смертности от инфаркта миокарда и инсульта.

Использование нами в ассоциативном исследовании генетической предрасположенности к ДН "крайних" вариантов фенотипа этой ангиопатии с тщательным контролем основных негенетических факторов риска позволило подтвердить ассоциацию полиморфизма типа I/D гена ACE со специфическим поражением почек при ИЗСД в московской популяции. И хотя эти данные не совпадают с результатами аналогичных исследований, проведенных в Дании [22], Германии [18] и Великобритании [8] и основанных на иных подходах к формированию групп "случай-контроль", они хорошо согласуются с выводами недавно опубликованной австрийской работы о "кодоминантном" эффекте этого полиморфного маркера в отношении ДН [3]. В этом исследовании также были учтены такие негенетические факторы риска ДН, как длительность ИЗСД, компенсация углеводного обмена и артериальная гипертензия.

Таким образом, полученные нами результаты еще раз подчеркивают сложность проблемы соотношения генотипа и фенотипа и необходимость учета основных факторов риска в изучении ассоциации полиморфных генетических маркеров с такой этиологически многофакторной патологией, как ДН.

Выводы

1. Использование неперекрывающихся критериев отбора больных (принцип "полярности"), сводящих к минимуму вклад негенетических фак-

торов риска в формирование клинического фенотипа ДН, позволил выявить генетический компонент в этиологии этой микроангиопатии при ИЗСД даже при наличии весьма малых выборок.

- 2. Генетический компонент в этиопатогенезе ДН у больных ИЗСД в московской популяции идентифицирован как полиморфизм типа I/D (insertion/deletion) гена АПФ.
- 3. Наиболее сильным генетическим маркером ДН при ИЗСД оказался аллель I с выраженным дозозависимым защитным эффектом, а не аллель D с ожидаемым эффектом предрасположенности.

ЛИТЕРАТУРА

- 1. Демуров Л. М., Чистяков Д. А., Чугунова Л. А. и др. // Молекул. биол. 1997. Т. 31, № 1. С. 59—62.
- Arbustini E., Grasso M., Fasani R. et al. // Brit. Heart J. 1995. – Vol. 74. – P. 584–591.
- 3. Barnas U., Schmidt A., Illievich A. et al. // Diabetologia. 1997. Vol. 40. P. 327—331.
- Bloem L. J., Manatunga A. L., Pratt J. H. // Hypertension. 1996. — Vol. 27. — P. 62—67.
- Borch-Johnsen K., Norgaard K., Hommel E. et al. // Kidney int. — 1992. — Vol. 41. — P. 719—722.
- Cambien F., Poirier O., Lecerf L. et al. // Nature. 1992. Vol. 359. P. 641-644.
- 7. Chowdhurry T. A., Kumar S., Barnett A. H., Bain S. C. // Diabet. Med. 1995. Vol. 12. P. 1059—1067.
- 8. Chowdhurry T. A., Dronsfield M. J., Kumar S. et al. // Diabetologia. 1996. Vol. 39. P. 1108—1114.
- Doria A., Warram J. H., Krolewski A. S. // Diabetes. 1994. Vol. 43. — P. 690—695.
- Johns M. B., Paulus-Thomas J. E. // Anal. Biochem. 1989. Vol. 80. — P. 276—278.
- 11. Kondratiev Y., Demurov L., Chugunova L. et al. // Diabetologia. 1996. Vol. 39, Suppl. 1. P. A296.
- Larkins R. G., Dunlop M. E. // Ibid. 1992. Vol. 35. P. 499—504.
- Marre M., Bernadet P., Gallois Y. et al. // Diabetes. 1994. Vol. 43. — P. 384—388.
- Mogensen C. E. // Kidney int. 1987. Vol. 31. P. 673—689.
- Panagiotopoulos S., Smith T. J., Aldred P. et al. // J. Diabet. Compl. — 1995. — Vol. 9. — P. 272—276.
- Rigat B., Hubert C., Alhenc-Gelas F. et al. // J. clin. Invest. —
 1990. Vol. 86. P. 1343—1346.
 Picat P. Hubert C. Cornel P. Scubricz F. // Nivel Acids Res. —
- Rigat B., Hubert C., Corvol P., Soubrier F. // Nucl. Acids Res. 1992. — Vol. 20. — P. 1433.
- Schmidt S., Schone N., Ritz E. et al. // Kidney int. 1995. Vol. 47. — P. 1176—1181.
- Seaquist E. R., Goetz F. C., Rich S., Barbosa J. // N. Engl. J. Med. — 1989. — Vol. 320. — P. 1161—1165.
- Siperstein M. D. // Amer. J. Med. 1988. Vol. 85, Suppl. 5A. P. 119—130.
- Smith S. R., Svetkey L. P., Dennis V. W. // Kidney int. 1991. Vol. 40. P. 815–822.
- Tarnow L., Cambien F., Rossing P. et al. // Diebetes. 1995. —
 Vol. 44. P. 489—494.
- Tiret L., Rigat B., Visvikis S. et al. // Amer. J. hum. Genet. 1992. — Vol. 51. — P. 197—205.
- Tolins P. J., Raij L. // N. Engl. J. Med. 1988. Vol. 319. P. 180—181.
- Walsh P., Metzger D., Higuchi R. // BioTechniques. 1991. —
 Vol. 10. P. 506—513.
- Yudkin J. S. // J. Diabet. Compl. 1996. Vol. 10. P. 129—132.