€ КОЛЛЕКТИВ АВТОРОВ, 2008

УДК 616.379-008.64-053.2-092.577.112

В. Н. Панфилова¹, Т. Е. Таранушенко¹, Н. К. Голубенко², С. М. Лобанова²,

О. А. Терентьева²

ВАЗОКОНСТРИКТОРНЫЙ ПЕПТИД ЭНДОТЕЛИН-1 У ДЕТЕЙ И ПОДРОСТКОВ С САХАРНЫМ ДИАБЕТОМ 1-ГО ТИПА

¹ГОУ ВПО Красноярская государственная медицинская академия Федерального агентства по здравоохранению и социальному развитию, ²КГУЗ Красноярская краевая детская больница

Исследован вазоконстрикторный пептид эндотелин-1 в плазме больных сахарным диабетом 1-го типа (СД1) детей и подростков, являющийся одним из маркеров эндотелиальной дисфункции. Полученные результаты свидетельствуют о нарушении функции эндотелия сосудов у больных с продолжительностью заболевания более 5 лет; среди пациентов с одинаковой
длительностью диабета уровень эндотелина-1 повышен при продолжительной декомпенсации углеводного обмена, наличии
дислипидемии, а также при повышенной экскрекции альбумина с мочой (особенно на уровне макроальбуминурии выше 300
мг/л). Можно предполагать, что анализируемый пептид эндотелин приобретает диагностическую значимость при продолжительном (более 5 лет) и неблагоприятном течении СД1.

Ключевые слова: сахарный диабет 1-го типа, дети, дисфункция эндотелия, эндотелин-1.

The plasma vasoconstrictive peptide endothelin-1 that is one of the markers of endothelial dysfunction was studied in children and adolescents with type 1 diabetes. The findings suggest vascular endothelial dysfunction in patients with a 5-year history of the disease; in patients with the same duration of the disease, the level of endothelin-1 is increased in prolonged carbohydrate metabolic decompensation, dyslipidemia, and increased urinary albumin excretion (particularly in macroalbuminuria greater than 300 mg/l). It may be presumed that the test peptide endothelin assumes a diagnostic value in the prolonged (more than 5 years) and poor course of type 1 diabetes.

Key words: type 1 diabetes, children, endothelial dysfunction, endothelin-1.

Причиной частых инвалидизирующих осложнений сахарного диабета (СД) является поражение сосудов. Основной причиной ангиопатий признан факт длительной хронической гипергликемии и сопряженного окислительного стресса. В свою очередь окислительный стресс приводит к нарушению структуры и функций эндотелиальных клеток, определяемому как эндотелиальная дисфункция (ЭД).

В клинической практике функциональную активность эндотелия оценивают с помощью как инструментальных, так и лабораторных методов исследования, включая определение эндотелина-1 (Э-1) начиная с 1988 г., когда впервые М. Yanagisawa и соавт. [10] был описан эндотелиальный вазоконстрикторный пептид, названный эндотелином, опубликовано множество исследований, где доказана его наиболее высокая сосудосуживающая активность. В настоящее время эндотелин рассматривается как маркер и предиктор многих патологий, таких, как ишемическая болезнь сердца, острый инфаркт миокарда, атеросклероз, легочная и системная гипертензия, гломерулонефрит, а также СД. По мнению ряда авторов, ЭД является предвестником микро- и макроангиопатий у больных сахарным диабетом, однако исследований с определением данного маркера у детей и подростков в зависимости от длительности заболевания и степени компенсации СД не проводилось.

Целью настоящего исследования была оценка уровня Э-1 у детей и подростков с СД 1-го типа (СД1) в зависимости от длительности заболевания, характера компенсации и наличия сосудистых осложнений.

Материалы и методы

Проведена оценка показателей Э-1 плазмы крови в когорте детей и подростков до 18 лет, страдаю-

щих СД1. Плазменный Э-1 определен у 84 детей, из них 63 — больные сахарным диабетом. В зависимости от продолжительности заболевания пациентов разделили на группы: 1-я — до 3 лет (21 ребенок); 2-я — от 3 до 5 лет (21 больной) и 3-я — более 5 лет (21 пациент). Группу контроля составил 21 практически здоровый ребенок без нарушений углеводного обмена и других органических соматических заболеваний. Уровень Э-1 определен иммуноферментным методом (эндотелин 1-21, "Віотесіса", кат. № ВІ-20052) в ЭДТА — плазме. По информации фирмы-производителя, медиана уровня Э-1 составляет 0,34 фмоль/мл.

Методы статистического анализа определяли после проверки нормальности (p < 0,01, критерий Шапиро—Уилка), преимущественно использовали непараметрические критерии (χ^2 , Краскела—Уоллиса, Манна—Уитни, Колмогорова—Смирнова), различия считали статистически значимыми при p < 0,05.

Результаты и их обсуждение

Группы пациентов, у которых определяли уровень Э-1 плазмы, были сопоставимы по возрасту и

полу (табл. 1).

Основные значения Э-1 в группах обследованных представлены в табл. 2. Медиана уровня Э-1 была наиболее высокой в 3-й группе детей и составила 0,545 фмоль/мл. При этом рассмотренные показатели были одинаковыми в 1-й группе больных СД1 и в контроле — 0,365 и 0,37 фмоль/мл соответственно, и наименьшими во 2-й группе — 0,349 фмоль/л при существенном разбросе значений. Статистически значимые различия в уровне Э-1 выявлены для 3-й группы больных СД1 по сравнению с 1-й и контролем (p = 0,0266).

Таблица 1

Характеристика обследованных

Группа пациентов	Число обсл	педованных	Возраст, годы:	
	мужчины	женщины	Возраст, годы; Ме (95% ДИ)	
1-я	8	13	13,2 (11,22-12,93)	
2-я	7	14	14 (11,49-14,82)	
3-я	10	11	14,2 (12,51—14,7)	
Контроль	11	10	13,7 (12,29—13,85)	
p	0,799		0,7907	

 Π р и м е ч а н и е . Достоверность различий оценивали по критерию χ^2 и Краскела—Уоллиса.

Полученные значения Э-1 у детей контрольной группы были представлены в перцентильном распределении с общепринятым ранжированием: 10— 25-20-75-90-й перцентили. В последующем уровни Э-1 в пределах 25-75-го перцентильного интервала (0,201-0,513 фмоль/мл) считали средними, ниже 25-го и выше 75-го перцентилей — соответственно пониженными и повышенными, а ниже 10-го (менее 0,151 фмоль/мл) и выше 90-го (более 0,656 фмоль/мл) перцентилей — низкими и высокими. Анализ результатов Э-1 по полученным перцентильным интервалам в 1-3-й группах больных СД-1 показал следующее (табл. 3): у пациентов с непродолжительным СД1 (1-я группа) отмечено достоверно большее количество нормальных значений 9-1 по сравнению с 3-й группой (p=0.046); в 3-й группе больных, с продолжительностью СД более 5 лет, наибольшее число пациентов имели уровень 9-1 выше 90-го перцентиля (p = 0.036). Повышенное содержание плазменного Э-1 (выше 75-го перцентиля) отмечено у 19% детей 1-й группы, 28,6% пациентов 2-й группы и 52,4% обследованных в 3-й группе.

При распределении полученных показателей (Э-1) с учетом возраста и пола больных статистически значимых различий не выявлено.

Поскольку дисфункцию эндотелия у больных диабетом провоцирует хроническая гипергликемия, были сопоставлены концентрации \mathfrak{I} -1 с интегральным показателем оценки углеводного обмена у больных — гликированным гемоглобином ($\mathsf{HbA}_{\mathsf{lc}}$), который определяли вместе с вазоконстрикторным пептидом I -1 на этапе стационарного обследования ребенка. При проведенном анализе

Таблица 2

Медианы уровней Э-1 по группам обследованных

Показатель	Группа				
центральной статистики	1-я	2-я	3-я	контроль	
Ледиана Э-1, фмоль/мл	0,365	0,349	0,545	0,37	
5% ДИ, фмоль/мл	0,33-0,51	0,21-1,05	0,48-0,79	0,29-0,47	

 Π р и м е ч а н и е . * — различия 3-й группы с 1-й группой и контролем (критерий Краскела—Уоллиса) p=0,0266; ДИ — доверительный интервал.

не выявлено различий в значениях HbA_{lc} между представленными выше перцентильными интервалами уровней эндотелина: низким значением Э-1 соответствовали концентрации HbA_{lc} 9,3—9,9%, при нормальных уровнях Э-1 HbA_{lc} был от 8,7 до 9,45%, а повышенные значения Э-1 выявлены при показателях HbA_{lc} 8,75—9,8%. Учитывая отсутствие ожидаемых различий между уровнем HbA_{lc} и эндотелина, изучили взаимосвязь Э-1 с характером и качеством компенсации СД. Проанализированы все показатели HbA_{lc} за период болезни у каждого ребенка, что позволило распределить пациентов по 4 подгруппам:

— подгруппу А составили дети, у которых значения HbA_{1c} в динамике при каждом визите были ниже 7,6%, что соответствовало хорошей или оптимальной компенсации СД1 (критерии ISPAD Consensus Guidelines, 2001 г.);

— подгруппа В — больные со стабильно субоптимальной компенсацией (HbA_{lc} в диапазоне от 7,6 до 9%:

— подгруппа С — стабильно некомпенсированные больные с HbA_{1c} выше 9%;

— подгруппа D — дети с СД1, у которых уровень HbA_{1c} колебался от низких до высоких величин без тенденции к стабилизации.

При оценке концентраций Э-1 (табл. 4) отмечены примерно одинаковые уровни изучаемого вазоконстрикторного пептида в выделенных подгруппах у детей 1-й группы (длительность диабета до 3 лет); во 2-й группе пациентов (дети с продолжительностью диабета от 3 до 5 лет) выявлены статистически значимые различия показателей Э-1 в подгруппе D с подгруппами С и В, в которых медиана Э-1 была наиболее высокой; в 3-й группе прослеживается аналогичная тенденция, но без статистических различий. Сравнение общей которты пациентов независимо от принадлежности к группе также продемонстрировало более высокие значения плазменного Э-1 в подгруппах В и С по сравнению с подгруппой D; p = 0,0303.

Результаты анализа уровня Э-1 в зависимости от качества метаболической компенсации СД1 свидетельствуют о повышении содержания вазоконстриктора Э-1 при некомпенсированном диабете и при субоптимальной компенсации. Отсутствие значимых различий у детей со стажем более 5 лет может быть обусловлено влиянием других метабо-

Таблица 3 Распределение больных по перцентильным интервалам в зависимости от уровня Э-1

Г	Перцентильные интервалы						
Группа	ниже 10-го	10—25-й	25—75-й	75—90-й	выше 90-го		
1-я	_	-	17	2	2		
2-я	2	3	10	3	3		
3-я	1	_	9	2	9		
Контроль	3	3	9	3	3		
P	0,417	0,120	0,046*	1,0	0,036*		

Примечание. * — различия между 1-й и 3-й группами, критерий χ^2 .

Показатели Э-1 (в фмоль/мл) в зависимости от уровня длительной компенсации углеводного обмена, Ме (95% ДИ)

Группа больных	Подгруппа				
	A	В	С	D	Р
1-я	0,3	0,47 (0,26-0,67)	0,4 (0,24-0,64)	0,38 (0,22-0,66)	0,6156
2-я	0,35 (-1,5-2,2)	0,56 (-0,09-1,86)	0,44 (-0,58-2,63)	0,23 (0,16-0,34)	0,0201*
3-я	-	0,55 (0,36-0,99)	0,84 (0,32-1,08)	0,48 (0,33-0,73)	0,6857
Bce	0,3 (-0,03-0,7)	0,52 (0,44-0,93)	0,45 (0,28-1,17)	0,34 (0,29-0,49)	0,0303*

Примечание. • — различия между подгруппой D и подгруппами В и С (критерий Краскела—Уоллиса).

лических причин и сосудистых осложнений на концентрации Э-1 в плазме. В качестве возможной причины, влияющей на Э-1, рассматривается дислипилемия.

В исследованиях по изучению дисфункции эндотелия при СД 2-го типа [1, 4—7] отмечены связи между уровнем липидов и Э-1. Подобные исследования при СД1 у пациентов детского и подросткового возраста не проводились. Вместе с тем изучение соотношения признаков дисфункции эндотелия по концентрации Э-1 и липидного спектра крови поможет своевременно изменить терапевтическую тактику и предотвратить поражения сосудов, являющиеся основными причинами инвалидизации и преждевременной летальности больных СД1.

При сравнении показателей липидограммы и Э-1, исследованных одномоментно (табл. 5), установлено, что содержание триглицеридов и липопротеи-

дов низкой плотности (ЛПНП) было примерно одинаковым у пациентов при различных уровнях исследуемого пептида.

Общий холестерин (XC) был достоверно выше у детей 1-й группы при повышенной концентрации Э-1 плазмы. В других подгруппах, как и суммарно у всех пациентов, значения XC были сопоставимы и не зависели от уровня эндотелина.

Протективные липопротеиды высокой плотности (ЛПВП), рассмотренные в рамках обозначенных выше перцентильных интервалов, показали более высокие значения при нарастании уровней Э-1 у пациентов 1-й группы и среди общего числа больных. В соответствии с данными исследований [1] можно предполагать компенсаторный механизм увеличения уровня ЛПВП при повышенной секреции Э-1 в целях противодействия вазоконстрикции сосудов на ранних стадиях заболевания.

Содержание липидов крови (в ммоль; Ме (95% ДИ)) и Э-1 на момент исследования

Таблица 5

Payma	Э-1, перцентили				
Группа	ниже 25-го	25—75-й	выше 75-го	P	
		Холестерин			
-я	I I FOLD I F THE STREET	4,1 (3,93-4,74)	4,8 (3,92-5,58)	0,0401	
?-я	4,5 (2,15-6,13)	4,35 (4,03-5,15)	4,55 (4,06-5,95)	0,5928	
-я	5,7	5,1 (4,62-6,07)	4,6 (4,18—5,28)	0,1489	
Bce	5,05 (2,75-6,05)	4,1 (4,12-4,74)	4,7 (4,35-5,43)	0,1846	
a mobile local	MARKET STORY IN THE	Триглицериды			
l-я	SERVICE PROPERTY	0,9 (0,67-1,66)	0,75 (0,38-1,42)	0,7128	
2-я	0,9 (-0,05-2,34)	0,8 (0,64-1,2)	0,85 (0,26-2,47)	0,9179	
8-я	1,7	0,9 (0,63-1,62)	1,0 (0,74—1,54)	0,4941	
Bce	1,1 (0,3-2,17)	0,9 (0,76-1,39)	0,8 (0,58—1,78)	0,9401	
		ЛПВП			
l-я	-	1,3 (1,18-1,42)	1,65 (1,02-2,29)	0,0472	
?-я	1,2	1,35 (1,14-1,56)	1,5 (0,67-2,19)	0,2159	
8-я	AND REAL PROPERTY OF STREET	1,45 (1,1-1,57)	1,2 (1,01—1,39)	0,1752	
Bce	1,2	1,3 (1,22-1,4)	1,6 (1,21—1,83)	0,0164	
		лпнп			
l-я		2,35 (1,89-2,72)	2,54 (-1,91-6,99)	0.0962	
2-я	1,48	3,0 (2,01-3,92)	2,25 (1,49-3,17)	1,0	
3-я		3,4 (2,52-4,22)	2,61 (1,94—2,92)	0,0201	
Bce	1,48	2,74 (2,37—3,1)	2,53 (2,13-2,7)	2422	

Примечание. Использован критерий Краскела—Уоллиса.

Таблица 6

Концентрация Э-1 плазмы в зависимости от наличия дислипидемии

Группа	Дислипи	Дислипидемия есть		Дислипидемии нет	
	количество больных	значение Э-1, фмоль/мл; Ме (95% ДИ)	количество больных	значение Э-1, фмоль/мл; Ме (95% ДИ)	р (Э-1)
l-я	5	0,47 (0,250,6)	16*	0,33 (0,31-0,54)	0,5633
2-я	10	0,38 (0,01-1,85)	11	0,35 (0,24-0,49)	0,5035
3-я	14	0,73 (0,53-0,94)	7	0,41 (0,27-0,6)	0,0036
Итого	29	0,48 (0,45-1,05)	34	0,38 (0,34-0,48)	0,0191

Примечание. *-p=0,002 между количеством больных с дислипидемией и без нарушений обмена липидов, критерий χ^2 .

По результатам повторных обследований определена доля больных с дислипидемией; при этом только в 1-й группе их количество оказалось значимо меньше по сравнению с пациентами, имеющими нормальные показатели липидного спектра (табл. 6). Различия в концентрации \mathfrak{I} -1 плазмы отмечены у детей из 3-й группы: уровень \mathfrak{I} -1 значимо выше у пациентов с нарушенным липидным обменом (p=0,0036). Аналогичная закономерность отмечена во всей выборке больных СД1.

Рассмотренные отношения между значениями Э-1 и липидного обмена показали, что высоким показателям эндотелина-1 соответствует дислипидемия с высоким содержанием ХС и ЛПВП.

Другим лабораторным показателем, который может быть ассоциирован с дисфункцией эндотелия и, возможно, с ее плазменным маркером — Э-1, является альбуминурия. В ряде исследований обсуждается связь ЭД с поражением почек при диабетической нефропатии (ДН) в эксперименте, у больных СД [3, 8, 9] и при заболевании почек, не связанных с диабетом [2]. Проведен анализ показателей плазменного Э-1 и альбумина в моче.

Сравнение медиан альбуминурии при распределении по перцентильным интервалам Э-1 различий не выявило как на момент исследования, так и за весь период наблюдения.

Результаты исследования эндотелина плазмы больных СД1 в зависимости от наличия и постоянства альбуминурии, определенной за весь период наблюдения детей, приведены в табл. 7. На начальных этапах заболевания достоверно большее количество

пациентов 1-й группы не выделяли альбумин с мочой, у б человек отмечена непостоянная микроальбуминурия (МАУ), при этом показатели Э-1 в данной группе не зависели от МАУ. Во 2-й группе (продолжительность СД1 3—5 лет) у 2 детей диагностирована ДН в стадии МАУ, однако у большинства больных были нормальные анализы мочи (p < 0.01). Концентрация Э-1 в этой группе различалась в зависимости от постоянства экскреции альбумина и была выше у детей с ДН (p < 0.01). В группе больных с длительностью диабета более 5 лет нефропатия диагностирована в 3 случаях, при этом количество детей, выделяющих и не выделяющих альбумин с мочой, статистически не различалось. Как и во 2-й группе, у пациентов с продолжительным заболеванием, показатели Э-1 в плазме были значимо выше при наличии ДН по сравнению с больными без альбуминурии или с непостоянной альбуминурией (p < 0.01). Аналогичные результаты получены у всех пациентов независимо от длительности диабета (p = 0.0172).

Следующее сравнение проведено между показателями Э-1 в зависимости от уровня альбуминурии у пациентов (табл. 8): при содержании альбумина в моче ниже 20 мг/л делали заключение об отсутствии экскреции альбумина; уровню МАУ соответствовали значения альбумина в моче от 20 до 200 мг/л; макроальбуминурию регистрировали при концентрации альбумина выше 300 мг/л минимум в двух из трех порций мочи; пациентов с периодическими появлениями МАУ отнесли к подгруппе "непостоянная МАУ".

Таблица 7

Концентрация Э-1 плазмы в зависимости от наличия МАУ, Ме (95% ДИ)

Группа				
	альбуминурии нет	непостоянная МАУ	постоянная альбуминурия	P
1-я	n = 15	n = 6	_	< 0,01
	0,39 (0,32-0,47)	0,30 (0,28-0,62)	Section 1997 To Section 1997	0,9719
2-я	n = 14	n = 5	n=2	< 0,01*
	0,33 (0,18-0,81)	0,40 (0,17-0,57)	2,24 (-21,8-26,28)	< 0,01*
3-я	n = 10	n = 8	n = 3	0,062
	0,51 (0,39-0,72)	0,58 (0,32-1,06)	0,87 (-0,18-1,64)	< 0,01**
Итого	n = 39	n = 19	n = 5	< 0,01*
	0,41 (0,35-0,61)	0,48 (0,38-0,66)	0,87 (-0,65-3,31)	0,0172*

Примечание. * — различия между подгруппами без альбуминурии и с непостоянной или постоянной МАУ, критерий χ²; ** — различия Ме Э-1 между подгруппами без альбуминурии и с постоянной альбуминурией, критерий Краскела—Уоллиса (в 1-й группе критерий Колмогорова—Смирнова).

Концентрация плазменного Э-1 в зависимости от уровня альбуминурии

F-1	Концентрация Э-1, фмоль/мл, Ме (95% ДИ)				
Группа	альбуминурия 20 мг/л	МАУ 20—299 мг/л	альбуминурия выше 300 мг/л	непостоянная МАУ	p
1-я	0,29 (0,27-0,37)	0,49	_	0,6 (0,39-0,82)	0,006
2-я	0,33 (0,18-0,81)	0,35	4,13	0,4(0,17-0,57)	0,4353
3-я	0,44 (0,36-0,64)	1,0 (0,47-1,67)	0,87	0,52 (0,23-0,83)	0,0448
Все	0,36 (0,32-0,54)	0,84 (0,38-1,32)	2,5 (-18,22-23,22)	0,48 (0,39-0,63)	0,0023

Примечание. Использован критерий Краскела-Уоллиса.

При отсутствии альбумина в моче показатели плазменного эндотелия были самыми низкими и. напротив, при наличии макроальбуминурии отмечены наиболее высокие уровни 9-1 (p = 0.023).

В меньшей степени описана зависимость между ЭД и другими микрососудистыми осложнениями

СД1 — ретинопатией и нейропатией.

Сравнение значений Э-1 плазмы в зависимости от изменений на глазном дне детей с СД1 не выявило статистических различий, повышение концентраций Э-1 при ухудшении состояния сетчатки отмечено на уровне тенденции в 3-й группе. Также не выявлены различия при распределении концентраций эндотелина в зависимости от стадии диабетической нейропатии.

Таким образом, в результате проведенного исследования установлены повышение значения эндотелина у больных СД1 при продолжительности заболевания более 5 лет; указанные изменения следует рассматривать как проявление ЭД.

Эндотелин-1 (Э-1) как маркер нарушенной функции эндотелия сосудов повышен у больных со стабильно некомпенсированным утлеводным обменом независимо от длительности заболевания.

Увеличение уровня Э-1 сопутствует повышению показателей липидов высокой плотности и холестерина; при продолжительности диабета более 5 лет увеличивалась доля детей с дислипидемией, при которой имеются более высокие концентрации Э-1.

У больных со стажем заболевания от 3 лет и более установлено повышенное содержание Э-1 при стабильной экскреции альбумина с мочой по сравнению с пациентами, имеющими непостоянную альбуминурию; наиболее значимые различия получены при альбуминурии выше 300 мг/л.

Можно предполагать, что анализируемый пептид Э-1 приобретает диагностически значимые концентрации при продолжительном неблагоприятном течении сахарного диабета 1-го типа.

ЛИТЕРАТУРА

- 1. Гомазков О. А. // Вопр. мед. химии. 1999. № 4. C. 5-10.
- 2. Одинец Ю. В., Раковская Л. А. // Укр. тер. журнал. 2002. № 12. С. 39—44.
- 3. Северина А. С., Шестакова М. В. // Сахар. диабет. 2001. № 12. — C. 3—5.
- D'Uscio L. V., Barton M., Shaw S. et al. // Cardiovasc. Res. 2002. Vol. 53, N 2. P. 487–495.
 El-Mesallamy H., Suwailem S., Hamdy N. // Mediators Inflamm. Vol. 2007. 2007: 73635.
- 6. Hasdai D., Holmes D. R., Garratt K. N. et al. // Circulation. -
- Hasaar D., Holmes D. R., Garratt K. N. et al. // Circulation. 1997. Vol. 95. P. 357-362.
 Maguire J. J., Wiley K. E., Kuc R. E. et al. // Proc. Soc. exp. Biol. (N. Y.). 2006. Vol. 231. P. 806—812.
 Mishra R., Emancipator S. N., Kern T. S. et al. // Biochem. bio-phys. Res. Commun. 2006. Vol. 339, N 1. P. 65-70.
 Willsking F. I. Gant B. Higts. C. et al. // Dishetes. 2002. —
- Wiltshire E. J., Gent R., Hirte C. et al. // Diabetes. 2002. Vol. 51. P. 2282—2286.
- 10. Yanagisawa M., Kuritara S., Kimura S., Tonobe Y. et al. // Nature. 1988. Vol. 332, N 31. P. 411—415.

С КОЛЛЕКТИВ АВТОРОВ, 2008

УДК 616.441-006.5-053.2-076.5-073.432.1

А. В. Кияев, Н. А. Елисеева, Н. П. Королева

ДИАГНОСТИЧЕСКАЯ ТОЧНОСТЬ ТОНКОИГОЛЬНОЙ АСПИРАЦИОННОЙ БИОПСИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ ПОД УЛЬТРАЗВУКОВЫМ КОНТРОЛЕМ И МОРФОЛОГИЧЕСКАЯ СТРУКТУРА УЗЛОВОГО ЗОБА У ДЕТЕЙ И ПОДРОСТКОВ

Областная детская клиническая больница № 1 (главный врач — канд. мед. наук С. Н. Боярский), Екатеринбург

В период с 2000 по 2007 г. 202 детям и подросткам (167 девочек и 35 мальчиков) в возрасте от 7,2 до 17,7 года (медиана 15,6 года) проведена тонкоигольная аспирационная биопсия (ТАБ) щитовидной железы под ультразвуковым контролем. В 20 (9,9%) случаях цитологические препараты оказались неинформативными. При размерах узлов менее 10 мм частота информативных биопсий была достоверно ниже, чем при уэлах диаметром 1 см и больше (63,2% против 94,9%; $\chi^2=23,23$; р = 0,000). 41 пациент был прооперирован: рак щитовидной железы (ЩЖ) — 21, фолликулярная аденома — 15, коллоидный зоб — 5. Доля рака ЩЖ в морфологической структуре узлового зоба составила 11,5% (21 из 182 информативных ТАБ). Высокая точность метода ТАБ под ультразвуковым контролем в диагностике опухолей ЩЖ (чувствительность 97,2%; специфичность 80%; точность 95,1%) определяет адекватную тактику в отношении узлов ЩЖ у детей и подростков.

Ключевые слова: узлы щитовидной железы, дети, тонкоигольная аспирационная биопсия.