•

© П. П. ГОНЧАРОВ, 1995

УЛК 616.441-07:616.154:577.175.444

Н. П. Гончаров

ГОРМОНАЛЬНЫЙ АНАЛИЗ В ДИАГНОСТИКЕ ЗАБОЛЕВАНИЙ ЩИТОВИДНОЙ ЖЕЛЕЗЫ (ЛЕКЦИЯ)

Эндокринологический научный центр РАМН, Москва

Создание методов радиоиммунологического (РИА) с целью определения гормонов оказало решающее влияние на развитие современной эндокринологии и прежде всего тиреодологии. Начиная с 1973 г. методы РИА стали рутинными диагностическими методами определения тироксина (Т4), трийодтиронина (Т3) и тиреотропного гормона (ТТГ). Однако долгое время они давали возможность определять только фракции гормонов, связанных с транспортными белками, а РИА методы определения ТТГ не позволяли определять его низкие (< 0,1 мМЕ/л) концентрации. Позже были разработаны варианты РИА, основанные на иммунометрическом принципе, с применением твердофазных носителей и моноклональных антител. Это позволило определять наряду с общими Т₄ и Т₃ также их свободные формы. А именно своболные T_4 и T_3 (с T_4 и с T_3) обеспечивают весь спектр биологической активности. Их определение является наиболее информативным в оценке функционального состояния системы гипоталамус-гипофиз-щитовидная железа. ИРМА принцип позволил повысить чувствительность метода определения ТТТ до 0,16 мМЕ/л. Гакой уровень чувствительности удовлетворял клиницистов в оценке эутиреоидного состояния и гипотиреоза, однако он не позволял дифференцировать нормальный уровень ТТГ от субнормального у больных тиреотоксикозом.

В последнее десятилетие были созданы принципиально новые неизотопные технологии гормонального иммуноанализа. Вначале была разработана система, основанная на использовании флюорометрического метода ("Аркус" или "Дельфия", Финляндия). В качестве меченого компонента используется европий, а регистрация сигнала производится на специально сконструированном флюорометре. Чувствительность этого метода при определении ТТГ была доведена до 0,03 мМЕ/л. Ограничение использования системы "Дельфия" у нас в стране связано с импортом дорогостоящих наборов.

Вторым вариантом неизотопной технологии, который благодаря созданию российско-британской фирмы "Амеркард" полу-

чил распространение у нас в стране, является метод усиленной люминесценции (система "Амерляйт", Всликобритания). Чувствительность метода при определении ТТГ была доведена до <0.04 мМЕ/л, а свободных форм T_4 и $T_3-до<0.5$ пмоль/л. В основе метода усиленной люминесценции лежит классический конкурентный иммунометрический принцип. В случае определения с T_4 и с T_3 влияние транспортных связывающих белков ограничено использованием блокирующего агента. Принцип работы метода при определении ТТГ и с T_4 схематично изображен на рис. 1 и 2. К принципиальным достоинствам неизотопных методов относится возможность длительного (до 6 мес и более) использования наборов.

В настоящее время определение cT_4 и TTT с использованием сверхчувствительного метода является стратегическим диагностическим подходом к оценке гормонального статуса щитовидной железы. В табл. І приведен пример интерпретации результатов при одновременном определении T_4 и TTT, а на рис. З изображена схема диагностического элгоритма при

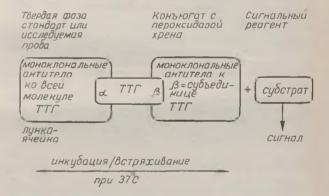
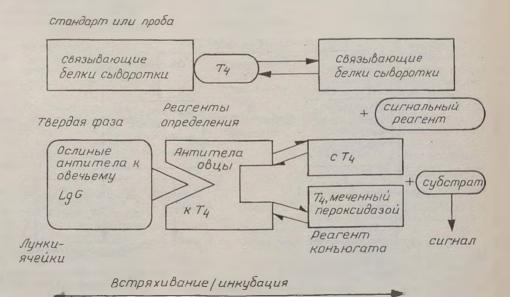



Рис. 1. Принципиальная схема определения ТТ1 методом усиленной люминесценции (система "Амерляйт").

60 мин при 37°С

Рис. 2. Принципиальная схема определения с Γ_4 методом усиленной люминесценции (система "Амерляйт").

Пример интерпретации результатов при определении ТТГ и с T_4 (пределы колебаний содержания ТТГ и с T_4 в сыворотке крови злоровых людей, по данным лаборатории гормонального анализа \mathfrak{D} НЦ РАМН, составляют соответственно $\mathfrak{0},1$ - $\mathfrak{3},5$ мМЕ/л и $\mathfrak{9}$ - $\mathfrak{2}5$ пмоль/л)

Копцентрация		Функциональное состояние щитовидной
сТ4, пмоль/л	TTI', MME/R	железы
16	1,2	Эутиреоидное состояние
90	0,1	Гипертиреоз
40	0,5	Начало гипертиреоза? (Возможно, имеет место проведение заместительной терапии?)
2	98	Гипотиреоз
6	2	Начало гипотиреоза? (Несовершенство метода определения ТТГ?)
6	<0,2	Гипопитуитаризм? (Несовершенный метод определения ТТГ?)

использовании в качестве "стратегического" маркера только сТ₄. Наряду с высокой чувствительностью, специфичностью, точностью к важным достоинствам системы "Амерляйт" необходимо также отнести ее высокую производительность. Один лаборант-оператор может в течение рабочего дня провести определение сТ₄ или ТТГ в 150 образцах сыворотки. Такая эффективность технологии делает ее незаменимой при проведении скрининговых программ, эпидемиологических исследований. При правильно организованной работе одна лаборатория в течение года может выполнить несколько десятков тысяч тестов. В случае использования классического РИА метода определения сТ₄ или ТТТ для выполнения такого объема работы потребовалось бы не менее 10 лабораторий. А это неизбежно ведет к снижению достоверности и надежности получаемых результатов за счет высокого (20% и выше) коэффициента вариации между индивидуальными лабораториями. Поэтому в случае оценки функции щитовидной железы в эпидемиологических исследованиях, где ожидаются субклинические изменения ее статуса, использование методов РИА практически неприемлемо.

К неизотопным методам определения гормонов относятся иммуноферментный вариант, а также чисто люминесцентный иммуноанализ, где в качестве меченого компонента используются акридин, люминол или изолюминол.

Определение общего тироксина (ТТа)

Содержание ТТ₄ у здоровых людей (эутиреоидное состояние) составляет в среднем 104 нмоль/л (65-160 нмоль/л).

Его концентрация превышает уровень T_3 в 60 раз. Как видно на рис. 4, основным специфическим транспортным белком, который имеет высокую аффинность (сродство) к T_4 и T_3 , является тироксинсвязывающий глобулин (ТСГ), хотя его сродство к T_4 в 5 раз выше по сравнению с T_3 . ТСГ циркулирует в крови в концентрации 160 мкг/ми и связывает 75% T_4 и 85% T_3 .

Вторым связывающим белком является преальбумин. Он имеет сравнительно низкую аффинность и связывает 15% T_4 и только 3% T_3 , при этом его сравнительно большая емкость достигается значимой концентрацией (250 мкг/мл).

Трегьим белком, в равной степени (по 10%) связывающим T_4 и T_3 , является альбумин. Его содержание в крови составляет 3,5 мг/мл, поэтому альбумин имеет огромную емкость к тиреоидным гормонам.

Хотя на долю с Γ_4 приходится 0,03%, именно не связанная с белком фракция обеспечивает весь спектр его метаболической и биологической активности, включая обеспечение механизма обратной связи регуляции гипоталамус — гипофиз — шитовидная железа.

Диагностическая значимость определения ТГ4

Количественное определение TT_4 в сыворотке крови до последнего времени служило основным гормональным параметром в оценке функции щитовидной железы. В подавляющем большинстве случаев при клинически выраженном гипертиреозе содержание T_4 в крови общей циркуляции повышено, а при гипотиреозе — снижено. Нормальный диапазон содержания TT_4 при эутиреоидном состоянии составияет 65-160 имоль/л со средним значением 104 имоль/л.

Вместе с тем в ряде случаев уровень TT₄ в крови не отражает функциональное состояние щитовидной железы. К ним относятся:

— изменения связывающей способности гиреоидсвязывающих белков. Например, концентрация TT_4 в крови может быть повышена при увеличении их связывающей способности. Последнее может быть обусловлено генетически детерминированным увеличением содержания $TC\Gamma$, а также беременностью, приемом контрацентивных препаратов, содержащих производные эстрадиола, терапией эстрогенами.

В то же время уровень TT_4 в крови может быть снижен за счет снижения связывающей способности $TC\Gamma$. К этому приводят следующие патологические состояния: хронические тяжелые заболевания печени, нефротический синдром, генетически детерминированное снижение синтеза $TC\Gamma$. Терапия андрогенами также снижает связывающую способность $TC\Gamma$. Следует также помнить, что в старческом возрасте у 20% людей с эугиреоидным состоянием снижается концентрация в крови тироксинсвязывающих белков, что в свою очередь ведет к уменьшению уровня TT_4 ;

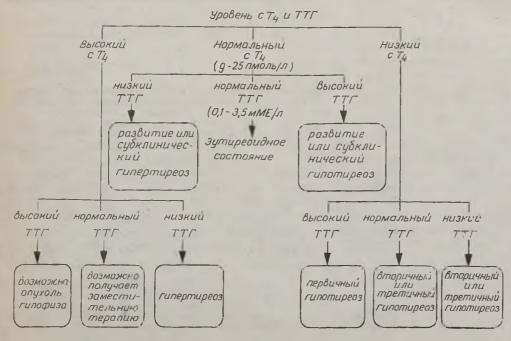


Рис. 3. Схема диагностического алгоритма для оценки гормональной функции щитовидной железы (с использованием высокочувствительного метода определения TTT и cT_4).

- в ряде случаев при гипертиреозе содержание TT_4 не изменяется, а уровень TT_3 повышен. Это обусловлено так называемым T_3 -тиреотоксикозом;
- уровень ТТ₄ обычно повышен у новорожденных, а также в ряде случаев пограничных состояний дисфункции щитовидной железы.

Во всех перечисленных случаях необходимо наряду с определением TT_4 провести анализ общего T_3 , $\mathrm{TC\Gamma}$ и связывающей способности к T_3 .

Факторы, искажающие результаты иммуноанализа ТТ4

1. Пробы плазмы больных с липемией могут быть использованы для определения TT_4 , если концентрация триоленна не превышает 60 мг/мл.

В гемолизированных пробах плазмы можно проводить определение при уровне гемоглобина до 2,5 мг/мл. У больных желтухой высокий уровень билирубина (> 0,5 мг/мл) искажает результаты анализа тироксина.

2. Нельзя использовать мутные пробы плазмы.

Ложно завышенные результаты при определении ТГ₄ могут быть обусловлены некоторыми хроническими заболеваниями крови, в частности миеломами с высоким уровнем IgG.

Необходимо помнить, что полученные результаты с использованием любого диагностического метода можно интерпретировать только в контексте клинической симптоматики, а также других диагностических параметров.

Определение общего трийодтиронина (ТТ3)

 T_3 образуется и секретируется щитовидной железой, но основное количество T_3 образуется вне щитовидной железы при дейодировании T_4 . Уровень TT_3 у здоровых людей с зутиреоидным статусом колеблется от 1,04 до 2,5 нмоль/л (среднее значение 1,7 нмоль/л). Около 99,5% T_3 , циркулирующего в крови, связано с белками. Как и для T_4 , основным транспортным белком. T_3 является $TC\Gamma$. Однако его аффинность для T_3 значительно ниже. Приблизительно 80% плазменного T_3 связано с $TC\Gamma$, остальные 20% гранспортируются преальбумином и альбумином (по 10%). На долю свободного, не связанного с белком T_3 приходится 0,3%. Свободная фракция T_3 обеспечивает биологическую и метаболическую активность и гем самым сохраняет зутиреоидное состояние.

Диагностическая значимость TT₃

В большинстве клинических случаев уровень ТТ₃ коррелирует с содержанием ТТ₄. Определение ТТ₃ более информативно при тиреотоксикозе, так как в ряде случаев уровень ТТ₄ существенно не изменяется, а концентрация сывороточного ТТ₃ резко увеличивается. Поэтому более адекватным объективным критерием в диагностике тиреотоксикоза является Т₃. Например, при неизмененной связывающей способности ТСГ и нормальном содержании ТТ₃ возможность диагноза тиреотоксикоза практически исключается.

Как и в случае TT_4 , повышение или снижение уровня T_3 может быть обусловлено генетически детерминированным состоянием, сопровождающимся изменением синтеза $TC\Gamma$. В таких случаях требуется определение других маркеров, cT_4 , $TC\Gamma$ и T_3 -связывающей способности.

Во время беременности уровень TT_3 повышается, равно как и при приеме эстрогенсодержащих гормональных контрацептивов. Это, как известно, происходит нараплельно с увеличением концентрации TCT. При мисломе, продуцирующей большое количество IgG, а также при тяжелых заболеваниях печени регистрируются ложно завышенные величины TT_3 . У новорожденных уровень T_3 также повышен. У ножилых мужчин регистрируется небольшое снижение его концентрации. У женщин уровень TT_3 не зависит от возраста. В половине случаев происходит снижение уровня TT_3 после различных хирургических операций. Хронические и острые заболевания также сопровождаются снижением его уровня.

Поэтому определение уровня только TT_3 в диагностике возможных нарушений функции щитовидной железы является недостаточным. Особенно это касается гипотиреоидного состояния, так как у части пациентов с гипотиреоидным состоянием уровень TT_3 сохраняется в пределах нормальных коллебаний.

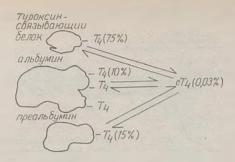


Рис. 4. Белки, связывающие гормоны щитовидной железы.

Факторы, искажающие результаты определения ТТ3

К ним относятся:

- гемолизированная сыворотка с уровнем гемоглобина > 1.25 мг/мл;
- линемическая сыворотка с уровнем линидов (триглицеридов) > 15 мг/мл;
 - содержание сывороточного билирубина > 0,25 мг/мл.
- В табл. 2 представлены данные о концентрации сывороточных TT_4 и TT_3 при различных функциональных состояниях щитовидной железы.

Высокий уровень TT_4 и TT_3 может встречаться также при передозировке препаратов йода у людей, проживающих в эндемичных по зобу регионах.

Определение сТ4

В свободной форме в крови общей циркуляции содержится не больше $0.03\%~T_4$. Диапазон концентраций, характерный для пормально функционирующей щитовидной железы, составляет 9.0-25 пмоль/л со средним значением 15.7 пмоль/л (система "Амерляйт"). В настоящее время cT_4 является одним из основных определяющих маркеров в оценке функции щитовидной железы.

Первоначально для определения с T_4 был создан специальный метод, в основе которого лежит принцип уравновененного диализа. Метод отличается высокой надежностью и точностью. Однако в силу своей трудоемкости он не может ис-

Габлица 2

Концентрация TT_3 и TT_4 при различных заболеваниях щитовилной железы

Концентрация		Заболевания шитовилной железы
TT ₄	TT ₃	- заоолевания притовидной железы
Нормальная	Высокая	1. Гипертиреоз (Т ₃ -токсикоз) Возможна передозировка Т ₃ 2. Эугиреоидное состояние с автономно функционирующей тканью щитовидной железы: - начало рецидива гипертиреоза - множественные узелки - тяжелая офтальмопатия 3. Компенсаторное увеличение содержания Т ₃ , обуоловленное: - субклиническим гипотиреозом - эндемическим зобом - синдромом Пендреда
Низкая	Низкая	Нарушение на уровне гипотала- мус — гипофиз. Понижена емкость ТСГ
Низкая	Нормальная	Начальные нарушения эутиреоидного состояния
Высокая	Высокая	Гипертиреоз. Повышение емкости ГСГ Передозировка Т ₄
Нормальная	Нормальная	Здоровые люди. Субклинический гипотиреоз

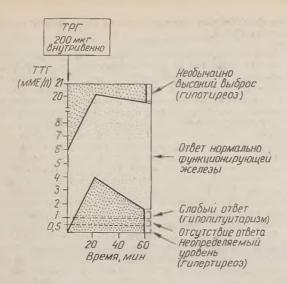


Рис. 5. Интерпретация результатов с ТРГ диагностическим тестом (взятие крови проводится через 20 и 60 мин после введения).

пользоваться в диагностической практике, но служит референтным методом при разработке методов иммуноанализа с Γ_4 . В настоящее время по основным параметрам (специфичность, чувствительность, воспроизводимость) наиболее совершенным методом определения с Γ_4 является метод усиленной люминесценции (система "Амерляйт").

При нормально функционирующей щитовидной железе механизмы, осуществляющие регуляцию ее функции, сконструированы таким образом, что содержание с \mathbf{T}_4 не зависит от концентрации связывающих белков. Именно это обстоятельство позволяет использовать определение с \mathbf{T}_4 в качестве наиболее адекватного и прямого маркера в оценке гормональной функции щитовидной железы.

В случае гипертиреоза уровень с T_4 повышается (>25 пмоль/л). При гипотиреозе он снижается (<9 пмоль/л). Повышение уровня циркулирующего с T_4 регистрируется у больных, получающих заместительную терапию тироксином.

Независимость уровня с T_4 от содержания белков, связывающих тиреоидные гормоны, позволяет использовать его в качестве надежного диагностического параметра при всех состояниях, сопровождающихся изменением концентрации ТСГ. Поэтому анализ с T_4 незаменим при беременности, у женщин, принимающих пероральные контрацептивы или получающих эстрогены или андротены, а также у лиц с наследственно обусловленным повышенным или пониженным содержанием ТСГ. Лекарственные препараты (салицилаты, фенитоин), которые искажают результаты определения TT_4 , не влияют на истинное содержание с T_4 . В этом принципиальное преимущество определения с T_4 по сравнению с TT_4 . Естественно, что в ряде случаев тест с T_4 необходимо дополнять другими маркерами: TT_3 , с T_3 , $TT\Gamma$. На рис. 4 изображена схема диагностического алгоритма с использованием определения с T_4 в качестве стратегического маркера.

Факторы, влияющие на результаты определения сТ4

Нагревание образцов исследуемого материала за счет денатурирующих белков приводит к увеличению содержания сТ₄, а также: содержание триглицеридов >3,75 мг/мл, содержание гемоглобина в гемолизированной пробе >1,25 мг/мл, содержание билирубина у больных желтухой >0,125 мг/мл.

Наличие аутоантител к T_4 обусловливает высокий уровень с T_4 , который не отражает клинического состояния больного.

Определение сТ3

 T_3 является главным биологически активным тиреоидным гормоном. Около 99,7% T_3 связано с белками и только 0,3% циркулирует в свободной форме. Фракция cT_3 обеспечивает весь спектр метаболической активности. cT_3 является продуктом метаболического превращения T_4 вне щитовидной железы. Необходимо подчеркнуть, что дейодирование T_4 с образованием T_3 идет более интенсивно в переднем гипофизе, чем в периферических тканях. Поэтому определение уров-

ня с T_4 в крови имеет большое значение в оценке состояния регуляции секреции ТТГ по принципу обратной связи. Как и в случае с Γ_4 , содержание с T_3 в крови не зависит от концентрации связывающих белков. Содержание с T_3 в сыворотке здоровых людей колеблется от 4 до 8 имоль/л, составляя в среднем 5,6 имоль/л. Его концентрация в 3-4 раза ниже по сравнению с концентрацией с T_4 . Установлена хорошая корреляция в поведении с T_3 и с T_4 у больных с различными нарушениями функции щитовидной железы. Поскольку уровень с T_3 не зависит от концентрации связывающих белков, то его определение очень информативно для оценки тиреоидного статуса во всех случаях изменения содержания связывающих белков. Они те же, что перечислены в разделе определения с T_4 .

Факторы, влияющие на результаты анализа сТ3

Они также практически те же, что перечислены в разделе определения cT_4 .

Функциональная проба с тиролиберином (ТРГ)

В настоящее время проба с ТРГ широко применяется для диагностики заболеваний щитовидной железы. При проведении теста используется отечественный препарат, производное ТРГ, рифотироин в дозе 200 мкг, вводимый внутривенно. Кровь для исследования берут до введения препарата, через 20 и 60 мин после его введения.

Низкий базальный уровень ТТГ и отсутствие его выброса на воздействие ТРГ подтверждают диагноз гипертиреоза, а V незначительный выброс указывает на возможный гипопитуитаризм. Гипотиреоз всегда сопровождается необычайно высоким (20-100 мМЕ/л) уровнем ТТГ при введении ТРГ. На рис. 5 представлены все варианты результатов при проведении теста с ТРГ. При этом необходимо иметь в виду, что некоторые нейротропные фармакологические препараты, особенно допаминергической направленности, могут значительно изменять реакцию аденогипофиза на введение ГРГ. К препаратам, которые снижают ответ гипофиза на введение ТРГ, относятся: кортикостероиды, L-ДОПА, ацетилсалициловая кислота, а к потенцирующим выброс ТТГ - амидарон, теофиллин. Поэтому при проведении пробы с ТРГ необходимо приостановить их прием. Принципиально важное значение проба с ТРГ приобретает для объективной оценки ✓ эффективности антитиреоидной терапии. Адекватный выброс ТТГ свидетельствует о нормализации функции системы гипоталамус - гипофиз -- щитовидная железа. Отрицательные результаты пробы однозначно говорят о неэффективности используемой консервативной терапии. К заболеваниям, при которых значительно снижается реакция гипофиза на ТРГ, относятся болезнь Иценко-Кушинга, тяжелые хронические заболевания почек, диабетическая кетоацидозная кома, психическая депрессия, голодание.

Определение тиреостимулирующего гормона (ТТГ)

Определение ТТГ наряду со с Γ_4 является одним из ведущих "стратегических" маркеров при оценке статуса щитовидной железы. ТТГ относится к группе гликопротенновых гормонов. Его молекулярная масса 28 000. Он состоит из двух субъединиц, α и β . α -Субъединица по своей химической структуре идентична α -субъединицам других гликопротеиновых гормонов человека — ЛГ, ФСГ и хорионического гонадотропина (ХГ). Однако необходимо отметить, что количество аминокислотных остатков у α -субъединицы ХГ на три больше.

В то же время β-субъединицы всех гликопротеиновых гормонов имеют свою индивидуальную химическую структуру, которая определяет их биологическую специфичность.

Синтез и секреция ТТТ по вертикали регулируются гипоталамическим трипептидом — тиролиберином, или тиреотропин-рилизинг-гормоном (ТРГ). В свою очередь ТТГ воздействует на щитовидную железу, обеспечивая синтез и секрецию T_4 и T_3 . В основе регуляции секреции ТТГ лежит механизм огрицательной и положительной обратной связи: высокие концентрации свободных T_4 и T_3 ингибируют, а низкие — стимулируют выброс ТТГ. Необходимо помнить, что в аденогипофизе дейодирование T_4 с образованием T_3 идет значительно более интенсивно, чем в периферических тканях. Содержание ТГГ в крови не претерпевает значитель-

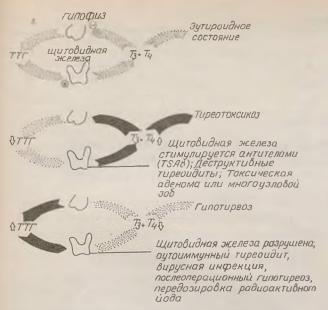


Рис. 6. Механизм обратной связи в регуляции системы гипоталамус-гипофиз-щитовидная железа.

ных изменений на протяжении суток, хотя его уровень несколько выше перед сном. Не выявлено также заметных колебаний в уровне ТТГ в зависимости от возраста. Исключение составляют первые 4-5 дней неонатального периода, когда его уровень высокий.

Содержание ТТГ у людей с эутиреоидным состоянием колеблется от 0,24 до 2,9 мМЕ/л, имеет среднее значение 1,19 мМЕ/л (система "Амерляйт").

В случае гипотиреоза уровень ТГГ повышается. Диагноз полтверждается низкими концентрациями Γ_4 и Γ_3 . В случае субклинического легкого гипотиреоза, когда уровень с Γ_4 и Γ_4 в крови находится в пределах нормального диапазона, выявление повышенного содержания ТТГ при гипотиреозе деляющее значение. Низкий уровень ТТГ при гипотиреозе свидетельствует о недостаточности гипофиза или гипоталамуса и исключает первичное нарушение функции щитовидной железы.

При гипертирсозе синтез и секреция ТТГ подавлены, поэтому определение с помощью сверхчувствительных методов очень низких концентраций ТТГ имеет принципиально важное значение в диагностике различных форм гипертиреоза. Анализ ТТГ является важным также для терапевтического мониторинга больных гипотиреозом, ежедневно получающих заместительную терапию тироксином. Определяя уровень ТТГ, можно оптимизировать дозу принимаемого L-тироксина.

На рис. 6 схематично показано значение ТТГ, Т₄ и Т₃ в реализации механизма обратной связи при гипертиреозе, эутиреоидном и гипотиреоидных состояниях.

Факторы, искажающие результаты определения ТТТ

К ним относятся:

- мутная сыворотка;
- присутствие в сыворотке форменных элементов крови;
- уровень триолеина > 60 мг/мл;
- гемолиз (уровень гемоглобина > 0,3 мг/мл);
- содержание билирубина > 0,04 мг/мл.

С помощью современных методов определения ТТГ показано, что его уровень не повышается у беременных и у женщин в период менопаузы.

Фармакологические препараты, искажающие результаты определения $TT\Gamma$, T_4 , T_3

1. Препараты, влияющие на функцию щитовидной железы — Йодиды. Йод в виде йодидов или его органических форм, как известно, входит в целый ряд препаратов или рептеноконтрастных веществ. В некоторых случаях, особенно при аутоиммунных тиреоздитах, йод может индуцировать гипотиреоз, ингибируя синтез и секрецию тиреоздных гормонов. Раннее действие будет проявляться уменьшением уровня в крови свободных форм Т₄ и Т₃ и небольшим подъемом уровня ТТТ, а также повышенным выбросом ТТТ при пробе с ТРГ. Более редко йодиды могут вызвать тиреотоксикоз, в частности в случае автономного многоузлового зоба.

Препараты лития. Эта группа веществ может подавлять секрецию Т₄ и Т₃ и снижать превращение Т₄ в Т₃. У некоторых больных снижение уровня сТ₄ может сопровождаться повышением уровня ТТГ и последующим уветичением щитовидной железы. Однако может быть и противоположная реакция. Трудпость заключается в том, что реакция щитовидной железы на препараты лития не прогнозируема. Поэтому ряд авторов рекомендуют проведение оценки гормонального статуса щитовидной железы до назначения препаратов лития и через каждые 3 мес в процессе терапии. Наиболее оптимальным вариантом оценки се функции является определение ТТГ и сТ₄.

Сульфаниламиды. Препараты оказывают слабое супрессивное действие на щитовидную железу. В течение 10 дней приема контримоксазола уровень ТТ₄ и ТТ₃ снижается на 15%. При более продолжительном введении компенсаторно

нарастает выброс ТТГ.

— Салицилаты. Их прием сопряжен со снижением захвата и секреции йода щитовидной железой, а также вытеснением T_4 из его связи с ТСГ, что приводит к повышению уровня с T_4 . При приеме 6-8 г ацетилсалициловой кислоты в день в течение недели происходит снижение реакции гипофиза на введение ТРГ до 30%.

 Фенилбутазон. Уровень ТТ₄ и сТ₄ при приеме этого препарата уменьшается за счет снижения их синтеза.

 Фенклофенак. Его применение формирует субнормальные концентрации сТ₄ и сТ₃.

2. Препараты, ингибирующие дейодирование T₄ в T₃

— Стероиды. Большие дозы дексаметазона (16 мг в день в течение 2,5 дней) значительно снижают превращение T_4 в T_3 с увеличением концентрации реверсивного T_3 . Они снижают базальный уровень ТТГ и реакцию на ТРГ.

— Радиографические контрастные вещества. Пероральное использование орографина для колецистографии значимо ингибирует дейодирование T_4 . В этом случае в конечном результате содержание cT_4 повышается, а уровень cT_3 остается нормальным.

— Амиодарон (кордарон X). Спустя 1 или 2 нед после назначения уровень TTT увеличивается почти в 3 раза, в то время как содержание TT_4 остается нормальным, а уровень TT_3 резко снижается.

- β -Блокаторы. Например, один из этих блокаторов, пропранолол, существенно замедляет конверсию T_4 в T_3 . Другие препараты (альпренолол, атенолол, метопролол) дают подобный эффект.

— Фуросемил. В значительных дозах этот диуретик вызывает снижение уровня TT_4 и cT_4 и последующее повышение концентрации $\mathrm{TT}\Gamma$.

Вещества, нарушающие катаболизм тиреоидных гормонов

Фенитоин усиливает катаболизм T_4 через соответствующие ферментные системы печени. Длительное применение препарата при эпилепсии требует наблюдения за функцией щитовидной железы. \checkmark

ЛИТЕРАТУРА

- 1. De Groot L. I., Larsen P. R., Refetoff M. D., Stanbury J. B. The Thyroid and its Diseases. 5-th Ed. Chichester, 1984.
- Hamburger J. J. Problems in Clinical Thyroidology. Limited Ed. – 1977.
- Labhart A. Clinical Endocrinology; Theory and Practice. 1986.
- 4. Mardel R. J., Gamlen T. R. Thyroid Function Tests in Clinical Practice. Bristol, 1984.

Поступила 20.06.94