Preview

Problems of Endocrinology

Advanced search

The value of central regulators of the immune response in the development of autoimmune thyroid diseases

https://doi.org/10.14341/probl10304

Abstract

The specific relationship between the endocrine and immune systems is represented by a numerous number of factors and mechanisms that form the structure and ensure the function of each of the two systems. For example, immunocompetent cells can produce immunologically active substances, as well as some hormones. On the other hand, immune cells are available to the effects of endogenous hormones. Currently, the so-called cross-regulation of endocrine and immune mechanisms in an equilibrium of pro-and anti-inflammatory responses has not been sufficiently studied. Among other autoimmune lesions, autoimmune thyreopathy occupies a significant place. The development of an autoimmune lesion of the thyroid gland is a complex process, which is the result of the interaction of infiltrating lymphocyte and thyrocyte tissue that can express a wide range of molecules involved in the immune response. Immunological and immunogenetic factors play a major role in the pathogenesis of autoimmune thyroid diseases, such as autoimmune thyroiditis and Graves disease. Despite the fact that more than 100 years have passed since the first description of autoimmune thyroiditis and Graves disease has been known for many centuries, the mechanisms of these pathologies are still not fully understood.

About the Authors

Ekaterina A. Troshina
https://www.endocrincentr.ru/
Endocrinology Research Centre
Russian Federation

MD, PhD, Professor



Evgeniya S. Senyushkina
https://www.endocrincentr.ru/
Endocrinology Research Centre
Russian Federation

MD



References

1. ФГБУ «Национальный медицинский исследовательский центр эндокринологии» МЗ РФ. Сборник методических рекомендаций (в помощь практическому врачу). Под ред. Трошиной Е.А. М.: Триада; 2017. FGBU «Natsional’nyi meditsinskii issledovatel’skii tsentr endokrinologii» MZ RF. Sbornik metodicheskikh rekomendatsii (v pomoshch’ prakticheskomu vrachu). Ed by Troshina E.A. M.: Triada; 2017. (In Russ.).

2. Трошина Е.А., Сенюшкина Е.С., Терехова М.А. Роль селена в патогенезе заболеваний щитовидной железы. Клиническая и экспериментальная тиреоидология. 2018;14:4:192-205. Troshina EA, Senyushkina ES, Terekhova MA. The role of selenium in the pathogenesis of thyroid disease. Clinical and experimental thyroidology. 2019;14(4):192-205. (In Russ.). doi: https://doi.org/10.14341/ket10157

3. Nowak K, Jabłońska E, Ratajczak-Wrona W. Immunomodulatory effects of synthetic endocrine disrupting chemicals on the development and functions of human immune cells. Environ Int. 2019;125:350-364. doi: https://doi.org/10.1016/j.envint.2019.01.078

4. Alamino VA, Montesinos MD, Soler MF, et al. Dendritic cells exposed to triiodothyronine deliver pro-inflammatory signals and amplify IL-17-driven immune responses. Cell Physiol Biochem. 2019;52(2):354-367. doi: https://doi.org/10.33594/000000025

5. Гарднер Д., Шобек Д. Базисная и клиническая эндокринология. Кн. 1. М.: БИНОМ; 2019. Gardner D, Shoback D. Greenspen’s basic & clinical endocrinology. Book 1. M.: BINOM; 2019. (In Russ.).

6. Mohammadnia-Afrouzi M, Ebrahimpour S. Assessment of TGF-β and IL10 levels in human brucellosis. Curr Issues Pharm Med Sci. 2018;31(1):22-24. doi: https://doi.org/10.1515/cipms-2018-0005

7. Sadhu S, Khaitan BK, Joshi B, et al. Reciprocity between regulatory T cells and Th17 cells: relevance to polarized immunity in leprosy. PLoS Negl Trop Dis. 2016;10(1):e0004338. doi: https://doi.org/10.1371/journal.pntd.0004338

8. Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008;28(4): 454-467.doi: https://doi.org/10.1016/j. immuni.2008.03.004

9. Tan Y, Chen W, Liu C, et al. Effect of IL-21 on the balance of Th17 cells/Treg cells in the pathogenesis of Graves’ disease. Endocr Res. 2019;44(4):138-147. doi: https://doi.org/10.1080/07435800.2019.1600535

10. Zheng L, Ye P, Liu C. The role of the IL-23/IL-17 axis in the pathogenesis of Graves’ disease. Endocr J. 2013;60(5):591-597. doi: https://doi.org/10.1507/endocrj.EJ12-0264

11. Bossowski A, Moniuszko M, Idźkowska E, et al. Evaluation of CD4+CD161+CD196+ and CD4+IL-17+ Th17 cells in the peripheral blood of young patients with Hashimoto’s thyroiditis and Graves’ disease. (In Polish). Pediatr Endocrinol Diabetes Metab. 2012;18(3):89-95.

12. Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 2011;74(1):1-13.doi: https://doi.org/10.1111/j.1365-3083.2011.02536.x

13. Liu C, Yang H, Shi W, et al. MicroRNA-mediated regulation of T helper type 17/regulatory T-cell balance in autoimmune disease. Immunology. 2018;155(4):427-434. doi: https://doi.org/10.1111/imm.12994

14. Esendagli G, Kurne AT, Sayat G, et al. Evaluation of Th17-related cytokines and receptors in multiple sclerosis patients under interferon β-1 therapy. J Neuroimmunol. 2013;255(1-2):81-84. doi: https://doi.org/10.1016/j.jneuroim.2012.10.009

15. Ryba-Stanisławowska M, Skrzypkowska M, Myśliwiec M, Myśliwska J. Loss of the balance between CD4(+)Foxp3(+) regulatory T cells and CD4(+)IL17A (+) Th17 cells in patients with type 1 diabetes. Hum Immunol. 2013;74(6):701-707. doi: https://doi.org/10.1016/j. humimm.2013.01.024

16. Vincze K, Kovats Z, Cseh A, et al. Peripheral CD4+ cell prevalence and pleuropulmonary manifestations in systemic lupus erythematosus patients. Respir Med. 2014;108(5):766-774. doi: https://doi.org/10.1016/j.rmed.2014.02.006

17. Zhang L, Yang XQ, Cheng J, et al. Increased Th17 cells are accompanied by FoxP3(+) Treg cell accumulation and correlated with psoriasis disease severity. Clin Immunol. 2010;135(1):108-117. doi: https://doi.org/10.1016/j.clim.2009.11.008

18. Guo W, Yu D, Wang X, et al. Anti-inflammatory effects of interleukin-23 receptor cytokine-binding homology region rebalance T cell distribution in rodent collagen-induced arthritis. Oncotarget. 2016;7(22):31800-31813. doi: https://doi.org/10.18632/oncotarget.9309

19. Wing JB, Sakaguchi S. Multiple Treg suppressive modules and their adaptability. Front Immunol. 2012;3:178.doi: https://doi.org/10.3389/fimmu.2012.00178

20. Shao S, Yu X, Shen L. Autoimmune thyroid diseases and Th17/Treg lymphocytes. Life Sci. 2018;192:160-165.doi: https://doi.org/10.1016/j.lfs.2017.11.026

21. Roncarolo MG, Gregori S, Bacchetta R, Battaglia M. Tr1 cells and the counterregulation of immunity: natural mechanisms and therapeutic applications. Curr Top Microbiol Immunol. 2014;380:39-68. doi: https://doi.org/10.1007/978-3-662-43492-5_3

22. Shao S, He F, Yang Y, et al. Th17 cells in type 1 diabetes. Cell Immunol. 2012;280(1):16-21. doi: https://doi.org/10.1016/j.cellimm.2012.11.001

23. Wu C, Yosef N, Thalhamer T, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature. 2013; 496(7446):513-517.doi: https://doi.org/10.1038/nature11984

24. Sakaguchi S, Vignali DA, Rudensky AY, et al. The plasticity and stability of regulatory T cells. Nat Rev Immunol. 2013;13(6):461-467. doi: https://doi.org/10.1038/nri3464

25. Li JR, Hong FY, Zeng JY, Huang GL. Functional interleukin-17 receptor A are present in the thyroid gland in intractable Graves disease. Cell Immunol. 2013;281(1):85-90. doi: https://doi.org/10.1016/j.cellimm.2013.02.002

26. Peng D, Xu B, Wang Y, et al. A high frequency of circulating th22 and th17 cells in patients with new onset Graves’ disease. PLoS One. 2013;8(7):e68446. doi: https://doi.org/10.1371/journal.pone.0068446

27. Shen J, Li Z, Li W, et al. Th1, Th2, and Th17 cytokine involvement in thyroid associated ophthalmopathy. Dis Markers. 2015;609593. doi: https://doi.org/10.1155/2015/609593

28. Kristensen B, Hegedüs L, Madsen HO, et al. Altered balance between self-reactive T helper (Th)17 cells and Th10 cells and between full-length forkhead box protein 3 (FoxP3) and FoxP3 splice variants in Hashimoto’s thyroiditis. Clin Exp Immunol. 2015;180(1):58-69. doi: https://doi.org/10.1111/cei.12557

29. Li D, Cai W, Gu R, et al. Th17 cell plays a role in the pathogenesis of Hashimoto’s thyroiditis in patients. Clin Immunol. 2013; 149(3):411-420. doi: https://doi.org/10.1016/j.clim.2013.10.001

30. Qin Q, Liu P, Liu L, et al. The increased but non-predominant expression of Th17- and Th1-specific cytokines in Hashimoto’s thyroiditis but not in Graves’ disease. Braz J Med Biol Res. 2012; 45(12):1202-1208. doi: https://doi.org/10.1590/s0100-879x2012007500168

31. Vitales-Noyola M, Doníz-Padilla L, Álvarez-Quiroga C, et al. Quantitative and functional analysis of CD69(+) NKG2D(+) T regulatory cells in healthy subjects. Hum Immunol. 2015;76(7):511-518. doi: https://doi.org/10.1016/j.humimm.2015.06.003

32. Zhou J, Bi M, Fan C, et al. Regulatory T cells but not T helper 17 cells are modulated in an animal model of Graves’ hyperthyroidism. Clin Exp Med. 2012;12(1):39-46. doi: https://doi.org/10.1007/s10238-011-0137-6

33. Xue H, Yu X, Ma L, et al. The possible role of CD4+CD25(high)Foxp3+/CD4+IL-17A+ cell imbalance in the autoimmunity of patients with Hashimoto thyroiditis. Endocrine. 2015;50(3):665-673. doi: https://doi.org/10.1007/s12020-015-0569-y

34. Kim SE, Yoon JS, Kim KH, Lee SY. Increased serum interleukin-17 in Graves’ ophthalmopathy. Graefes Arch Clin Exp Ophthalmol. 2012;250(10):1521-1526. doi: https://doi.org/10.1007/s00417-012-2092-7

35. Fang S, Huang Y, Zhong S, et al. IL-17A promotes RANTES expression, but not IL-16, in orbital fibroblasts via CD40-CD40l combination in thyroid-associated ophthalmopathy. Invest Ophthalmol Vis Sci. 2016;57(14):6123-6133. doi: https://doi.org/10.1167/iovs.16-20199


Supplementary files

1. Рис. 1.
Subject
Type Other
View (118KB)    
Indexing metadata ▾
2. Targeted therapy aimed at maintaining the balance of Th17 / Treg in patients with autoimmune thyroid disease.
Subject
Type Other
View (509KB)    
Indexing metadata ▾

Review

For citations:


Troshina E.A., Senyushkina E.S. The value of central regulators of the immune response in the development of autoimmune thyroid diseases. Problems of Endocrinology. 2019;65(6):458-465. https://doi.org/10.14341/probl10304

Views: 4371


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)