Preview

Problems of Endocrinology

Advanced search

Vitamin D metabolism in hypercorticism and acromegaly

https://doi.org/10.14341/probl12099

Abstract

Due to the high prevalence of low vitamin D levels in the overwhelming majority of regions of the world and discovery of extra-skeletal effects of vitamin D, the issue of maintaining adequate levels of vitamin D in the blood remains extremely relevant, especially in people with high risk of severe deficiency. To date, few studies have been performed on the features of vitamin D metabolism in disorders such as hypercorticism and acromegaly. However, vitamin D deficiency in such patients, according to available literature, may be more widespread and more pronounced than in general population. It is now recommended to use standard prophylactic and therapeutic doses of vitamin D for the treatment of these diseases, which may not satisfy the therapeutic goals specific to each disease. This review provides information on normal vitamin D metabolism, as well as literature data on the possible relationship and mutual influence between these endocrinopathies and vitamin D metabolism.

About the Authors

Alexandra A. Povaliaeva
Endocrinology Research Centre
Russian Federation

M.D.



Ekaterina A. Pigarova
Endocrinology Research Centre
Russian Federation

M.D., Ph.D.



Larisa K. Dzeranova
Endocrinology Research Centre
Russian Federation

M.D., Ph.D.



Liudmila Ya. Rozhinskaya
Endocrinology Research Centre
Russian Federation

M.D., Ph.D., Professor



Galina A. Mel'nichenko
Endocrinology Research Centre
Russian Federation

M.D., Ph.D., Professor



References

1. Пигарова Е.А., Рожинская Л.Я., Белая Ж.Е., и др. Клинические рекомендации Российской ассоциации эндокринологов по диагностике, лечению и профилактике дефицита витамина D у взрослых. Проблемы эндокринологии. 2016;62:4:60-84. Pigarova EA, Rozhinskaya LY, Belaya JE, et al. Russian Association of Endocrinologists recommendations for diagnosis, treatment and prevention of vitamin D deficiency in adults. Problemy endokrinologii. 2016;62(4):60-84. (In Russ.). doi: https://doi.org/10.14341/probl201662460-84

2. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266-281. doi: https://doi.org/10.1056/NEJMra070553

3. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319-329. doi: https://doi.org/10.1016/j.chembiol.2013.12.016

4. Holick MF, ed. Vitamin D. Molecular biology, physiology and clinical applications. 2nd ed. New York: Humana Press; 2010. doi: https://doi.org/10.1007/978-1-60327-303-9

5. Kugai N, Koide Y, Yamashita K, et al. Impaired mineral metabolism in Cushing’s syndrome: parathyroid function, vitamin D metabolites and osteopenia. Endocrinol Jpn. 1986;33(3):345-352. doi: https://doi.org/10.1507/endocrj1954.33.345

6. Hahn TJ, Halstead LR, Baran DT. Effects of short term glucocorticoid administration on intestinal calcium absorption and circulating vitamin D metabolite concentrations in man. J Clin Endocrinol Metab. 1981;52(1):111-115. doi: https://doi.org/10.1210/jcem-52-1-111

7. Findling JW, Adams ND, Lemann J, et al. Vitamin D metabolites and parathyroid hormone in Cushing’s syndrome: relationship to calcium and phosphorus homeostasis. J Clin Endocrinol Metab. 1982;54(5):1039-1044. doi: https://doi.org/10.1210/jcem-54-5-1039

8. Seeman E, Kumar R, Hunder GG, et al. Production, degradation, and circulating levels of 1,25-dihydroxyvitamin D in health and in chronic glucocorticoid excess. J Clin Invest. 1980;66(4):664-669. doi: https://doi.org/10.1172/JCI109902

9. Corbee RJ, Tryfonidou MA, Meij BP, et al. Vitamin D status before and after hypophysectomy in dogs with pituitary-dependent hypercortisolism. Domest Anim Endocrinol. 2012;42(1):43-49. doi: https://doi.org/10.1016/j.domaniend.2011.09.002

10. Jiang P, Xue Y, Li H, et al. Dysregulation of vitamin D metabolism in the brain and myocardium of rats following prolonged exposure to dexamethasone. Psychopharmacology (Berl). 2014;231(17):3445-3451. doi: https://doi.org/10.1007/s00213-014-3440-6

11. Klein RG, Arnaud SB, Gallagher JC, et al. Intestinal calcium absorption in exogenous hypercortisolism. J Clin Invest. 1977;60(1): 253-259. doi: https://doi.org/10.1172/JCI108762

12. Huybers S, Naber T, Bindels R, Hoenderop J. Prednisolone-induced Ca2+ malabsorption is caused by diminished expression of the epithelial Ca2+ channel TRPV6. Am J Physiol. 2007;292(1):92-97. doi: https://doi.org/10.1152/ajpgi.00317.2006

13. Van Cromphaut SJ, Stockmans I, Torrekens S, et al. Duodenal calcium absorption in dexamethasone-treated mice: functional and molecular aspects. Arch Biochem Biophys. 2007;460(2):300-305. doi: https://doi.org/10.1016/j.abb.2006.11.027

14. Levi M, Shayman JA, Abe A, et al. Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition. J Clin Invest. 1995;96(1):207-216. doi: https://doi.org/10.1172/JCI118022

15. Christakos S, Gill R, Lee S, Li H. Molecular aspects of the calbindins. J Nutr. 1992;122(3 suppl):678-682. doi: https://doi.org/10.1093/jn/122.suppl_3.678

16. Akeno N, Matsunuma A, Maeda T, et al. Regulation of vitamin d-1alpha-hydroxylase and -24-hydroxylase expression by dexamethasone in mouse kidney. J Endocrinol. 2000;164(3):339-348. doi: https://doi.org/10.1677/joe.0.1640339

17. Kurahashi I, Matsunuma A, Kawane T, et al. Dexamethasone enhances vitamin D-24-hydroxylase expression in osteoblastic (UMR-106) and renal (LLC-PK 1) cells treated with 1a, 25-dihydroxyvitamin D3. Endocrine. 2002;17(2):109-118. doi: https://doi.org/10.1385/ENDO:17:2:109

18. Khomenko AV. Cholecalciferol hydroxylation in rat hepatocytes under the influence of prednisolone. (In Ukrainian). Ukr Biokhim Zh. 2013;85(3):90-95. doi: https://doi.org/10.15407/ubj85.03.090

19. Dhawan P, Christakos S. Novel regulation of 25-hydroxyvitamin D3 24-hydroxylase (24(OH)ase) transcription by glucocorticoids: cooperative effects of the glucocorticoid receptor, C/EBPb, and the vitamin D receptor in 24(OH)ase transcription. J Cell Biochem. 2010;110(6):1314-1323. doi: https://doi.org/10.1002/jcb.22645

20. Kim M, Lee G, Jung E, et al. The negative effect of dexamethasone on calcium-processing gene expressions is associated with a glucocorticoid-induced calcium-absorbing disorder. Life Sci. 2009;85(3-4):146-152. doi: https://doi.org/10.1016/j.lfs.2009.05.013

21. Davidson ZE, Walker KZ, Truby H. Clinical review: do glucocorticosteroids alter vitamin D status? A systematic review with meta-analyses of observational studies. J Clin Endocrinol Metab. 2012;97(3):738-744. doi: https://doi.org/10.1210/jc.2011-2757

22. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911-1930. doi: https://doi.org/10.1210/jc.2011-0385

23. Grossman JM, Gordon R, Ranganath VK, et al. American College of Rheumatology 2010 Recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res. (Hoboken). 2010;62(11):1515-1526. doi: https://doi.org/10.1002/acr.20295

24. Buckley L, Guyatt G, Fink HA, et al. 2017 American College of Rheumatology Guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res. (Hoboken). 2017;69(8):1095-1110. doi: https://doi.org/10.1002/acr.23279

25. Ortego-Jurado M, Ríos-Fernández R, González-Moreno J, et al. Oral calcidiol is more effective than cholecalciferol supplementation to reach adequate 25(OH)D levels in patients with autoimmune diseases chronically treated with low doses of glucocorticoids : a «real-life» study. J Osteoporos. 2015;729451. doi: https://doi.org/10.1155/2015/729451

26. Shiraishi A, Takeda S, Masaki T, et al. Alfacalcidol inhibits bone resorption and stimulates formation in an ovariectomized rat model of osteoporosis : distinct actions from estrogen. J Bone Miner Res. 2000;15(4):770-779. doi: https://doi.org/10.1359/jbmr.2000.15.4.770

27. Shymanskyi I, Lisakovska O, Mazanova A, et al. Vitamin D3 modulates impaired crosstalk between RANK and glucocorticoid receptor signaling in bone marrow cells after chronic prednisolone administration. Front Endocrinol. (Lausanne). 2018;9(6):303. doi: https://doi.org/10.3389/fendo.2018.00303

28. Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health : lessons from vitamin D receptor null mice. Endocr Rev. 2008;29(6):726-776. doi: https://doi.org/10.1210/er.2008-0004

29. Lima GL, Paupitz JA, Aikawa NE, et al. A randomized double-blind placebo-controlled trial of vitamin D supplementation in juvenile-onset systemic lupus erythematosus : positive effect on trabecular microarchitecture using HR-pQCT. Osteoporos Int. 2018;29(3):587-594. doi: https://doi.org/10.1007/s00198-017-4316-5

30. Ringe JD, Dorst A, Faber H, et al. Superiority of alfacalcidol over plain vitamin D in the treatment of glucocorticoid-induced osteoporosis. Rheumatol Int. 2004;24(2):63-70. doi: https://doi.org/10.1007/s00296-003-0361-9

31. Yamada S, Takagi H, Tsuchiya H, et al. Comparative studies on effect of risedronate and alfacalcidol against glucocorticoid-induced osteoporosis in rheumatoid arthritis patients. Yakugaku Zasshi. 2007;127(9):1491-1496. doi: https://doi.org/10.1248/yakushi.127.1491

32. Brown J, Zacharin M. Attempted randomized controlled trial of pamidronate versus calcium and calcitriol supplements for management of steroid-induced osteoporosis in children and adolescents. J Paediatr Child Heal. 2005;41(11):580-582. doi: https://doi.org/10.1111/j.1440-1754.2005.00720.x

33. Rianthavorn P, Pisutikul K, Deekajorndech T, et al. Prevention of bone loss in children receiving long-term glucocorticoids with calcium and alfacalcidol or menatetrenone. J Pediatr Endocr Met. 2012;25(3-4):307-312. doi: https://doi.org/10.1515/jpem-2011-0441

34. Rooney M, Bishop N, Davidson J, et al. The prevention and treatment of glucocorticoid-induced osteopaenia in juvenile rheumatic disease: a randomised double-blind controlled trial. Clin Med. 2019;12:79-87. doi: https://doi.org/10.1016/j.eclinm.2019.06.004

35. Warady BD, Lindsley CB, Robinson RG, Lukert BP. Effects of nutritional supplementation on bone mineral status of children with rheumatic diseases receiving corticosteroid therapy. J Rheumatol. 1994;21(3):530-535.

36. Buckley LM, Leib ES, Cartularo KS, et al. Calcium and vitamin D3 supplementation prevents bone loss in the spine secondary to low-dose corticosteroids in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1996;125(12):961-968. doi: https://doi.org/10.7326/0003-4819-125-12-199612150-00004

37. Eskildsen PC, Lund B, Sorensen OH, et al. Acromegaly and vitamin D metabolism: effect of bromocriptine treatment. J Clin Endocrinol Metab. 1979;49(3):484-486. doi: https://doi.org/10.1210/jcem-49-3-484

38. Brown DJ, Spanos E, MacIntyre I. Role of pituitary hormones in regulating renal vitamin D metabolism in man. Br Med J. 1980;280(6210):277-278. doi: https://doi.org/10.1136/bmj.280.6210.277

39. Shah R, Licata A, Oyesiku NM, et al. Acromegaly as a cause of 1,25-dihydroxyvitamin D-dependent hypercalcemia: case reports and review of the literature. Pituitary. 2012;15(suppl 1):17-22. doi: https://doi.org/10.1007/s11102-010-0286-8

40. Ueda M, Inaba M, Tahara H, et al. Hypercalcemia in a patient with primary hyperparathyroidism and acromegaly: distinct roles of growth hormone and parathyroid hormone in the development of hypercalcemia. Intern Med. 2005;44(4):307-310. doi: https://doi.org/10.2169/internalmedicine.44.307

41. Lund B, Eskildsen PC, Lund B, et al. Calcium and vitamin D metabolism in acromegaly. Acta Endocrinol. 1981;96(4):444-450. doi: https://doi.org/10.1530/acta.0.0960444

42. White HD, Ahmad AM, Durham BH, et al. Effect of active acromegaly and its treatment on parathyroid circadian rhythmicity and parathyroid target-organ sensitivity. J Clin Endocrinol Metab. 2006;91(3):913-919. doi: https://doi.org/10.1210/jc.2005-1602

43. Takamoto S, Tsuchiya H, Onishi T, et al. Changes in calcium homeostasis in acromegaly treated by pituitary adenomectomy. J Clin Endocrinol Metab. 1985;61(1):7-11. doi: https://doi.org/10.1210/jcem-61-1-7

44. Ho PJ, Fig LM, Barkan АL, Shapiro B. Bone mineral density of the axial skeleton in acromegaly. J Nucl Med. 1992;33(9):1608-1612.

45. Bijlsma JW, Nortier JW, Researchgroupfor C, et al. Changes in bone metabolism during treatment of acromegaly. Acta Endocrinol (Copenh). 1983;104(2):153-159. doi: https://doi.org/10.1530/acta.0.1040153

46. Fredstorp L, Pernow Y, Werner S. The short and long-term effects of octreotide on calcium homeostasis in patients with acromegaly. Clin Endocrinol. 1993;39(3):331-336. doi: https://doi.org/10.1111/j.1365-2265.1993.tb02373.x

47. Cappelli C, Gandossi E, Agosti B, et al. Long-term treatment of acromegaly with lanreotide: evidence of increased serum parathormone concentration. J Endocr. 2004;51(6):517-520. doi: https://doi.org/10.1507/endocrj.51.517

48. Fontaine O, Pavlovitch H, Balsan S. 25-hydroxycholecalciferol metabolism in hypophysectomized rats. Endocrinology. 1978; 102(6):1822-1826. doi: https://doi.org/10.1210/endo-102-6-1822

49. Wongsurawat N, Armbrecht HJ, Zenser TV, et al. Effects of hypophysectomy and growth hormone treatment on renal hydroxylation of 25-hydroxycholecalciferol in rats. J Endocr. 1984;101(3):333-338. doi: https://doi.org/10.1677/joe.0.1010333

50. Brixen K, Nielsen HK, Bouillon R, et al. Effects of short-term growth hormone treatment on PTH, calcitriol, thyroid hormones, insulin and glucagon. Acta Endocrinol (Copenh). 1992;127(4):331-336. doi: https://doi.org/10.1530/acta.0.1270331

51. Bianda T, Hussain MА, Glatz Y, et al. Effects of short-term insulin-like growth factor-I or growth hormone treatment on bone turnover, renal phosphate reabsorption and 1,25 dihydroxyvitamin D3 production in healthy man. J Intern Med. 1997;241(2):143-150. doi: https://doi.org/10.1046/j.1365-2796.1997.94101000.x

52. Condamine L, Menaa C, Vztovsnik F, et al. Local action of phosphate depletion and insulin-like growth factor 1 on in vitro production of 1,25-dihydroxyvitamin D by cultured mammalian kidney cells. J Clin Invest. 1994;94(4):1673-1679. doi: https://doi.org/10.1172/JCI117512

53. Wei S, Tanaka H, Seino Y. Local action of exogenous growth hormone and insulin-like growth factor-I on dihydroxyvitamin D production in LLC-PK1 cells. Eur J Endocrinol. 1998;139(4):454-460. doi: https://doi.org/10.1530/eje.0.1390454


Supplementary files

Review

For citations:


Povaliaeva A.A., Pigarova E.A., Dzeranova L.K., Rozhinskaya L.Ya., Mel'nichenko G.A. Vitamin D metabolism in hypercorticism and acromegaly. Problems of Endocrinology. 2019;65(6):444-450. https://doi.org/10.14341/probl12099

Views: 6853


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)