Cystic fibrosis being a polyendocrine disease (Review)
https://doi.org/10.14341/probl12694
Abstract
The cystic fibrosis transmembrane regulator (CFTR) gene encodes the synthesis of a protein of the same name, which functions as a direct activator of anionic transport. Chloride is the most abundant anion; as an antagonist of Na+ and K+, it provides electroneutrality of cell membranes at rest; together with cations, it serves as an important osmolyte and forms water flow across cell membranes for transepithelial secretion.
Glandular cells in CF trap Cl– and Na+, and the prodused secretion is excessively viscous. Subnormal CFTR activity leads to stagnation of mucociliary clearance, inhibition of intestinal transport.
In addition to exocrine disorders, CFTR mutations are associated with a decrease in volume, mass, increased apoptosis of β-cells of the pancreas, a significant suppression of insulin exocytosis in response to stimulation with glucose and glucagon-like peptide-1, hyperglucagonemia against the background of a defect in the suppression of α-cell function by insulin, but a decrease in maximum capacity α-cells.
Deficiency and progressive decline in bone mineral density is an expected secondary manifestation of CF due to pancreatic exocrine insufficiency with malabsorption of nutrients and fat-soluble vitamins. However, in patients with the F508del mutation, a significant decrease in the synthesis of OPG, COX-2, PGE2 in the osteoblastic formation, and an increase in the activity of the antianabolic NF-kB were found. We are talking about a defect in the canonical signaling pathway (Wnt/β-catenin), which regulates the expression of genes-activators of osteoblastogenesis, dissociation of the stages of physiological bone remodeling.
In addition to congenital bilateral or unilateral aplasia of the vas deferens, an increase in the frequency of CFTR mutations is also found in non-obstructive azoospermia, oligo-, astheno- and teratospermia. CFTR is involved in the entry of HCO3– into Sertoli cells to trigger cAMP-dependent transcription and its defects lead to suppression of FSH-dependent gene expression of spermatogenesis, loss of sequence in the Wnt cascade, destruction of the PGE2-dependent transepithelial interaction and, as a consequence, the blood-testicular barrier.
CF is characterized, along with classical signs, by endocrine dysfunction of the pancreas, osteoporosis with suppression of osteoblastogenesis, and a defect in spermatogenesis.
About the Authors
N. B. ChagayRussian Federation
Natalia B. Chagay, MD, PhD
Lenina street, 304, Stavropol, 355000
eLibrary SPIN: 2323-7791
G. Ya. Khayt
Russian Federation
Gennady Ya. Khayt, MD, PhD
eLibrary SPIN: 2076-5880
Stavropol
T. M. Vdovina
Russian Federation
Tatyana M. Vdovina, MD, PhD
eLibrary SPIN: 2345-2185
Stavropol
A. A. Shaforost
Russian Federation
Anna A. Shaforost, MD
eLibrary SPIN: 1489-9230
Stavropol
References
1. Klinicheskie rekomendatsii soyuza pediatrov Rossii, Аssotsiatsii meditsinskikh genetikov, Rossiiskogo respiratornogo obshchestva, Rossiiskogo transplantologicheskogo obshchestva. Kistoznyi fibroz (mukovistsidoz). Ministerstvo zdravookhraneniya RF. Mоscоw; 2020. (In Russ.)
2. Landsteiner K. Darmverschluss durch eingedichtes Meconium. Pancreatitis. Zentrabl f. Allg Path. 1905;16:903-907.
3. Quinton PM. Cystic Fibrosis: Lessons from the Sweat Gland. Physiology. 2007;22(3):212-225. doi: https://doi.org/10.1152/physiol.00041.2006
4. Kaplan E, Shwachman H, Perlmutter AD, et al. Reproductive failure in males with cystic fibrosis. N Engl J Med. 1968;279(2):65-69. doi: https://doi.org/10.1056/NEJM196807112790203
5. Rommens JM, Iannuzzi MC, Kerem B, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245(4922):1059-1065. doi: https://doi.org/10.1126/science.2772657
6. Gembickaja TE, Chermenskij AG. Patofiziologicheskie defekty ionnogo transporta jepitelija dyhatel’nyh putej u bol’nyh mukoviscidozom i puti ih korrekcii. Prakticheskaja pul’monologija. 2011;4:35-39 (In Russ.)
7. Kelsey R, Manderson Koivula FN, McClenaghan NH, Kelly C. Cystic Fibrosis–Related Diabetes: Pathophysiology and Therapeutic Challenges. Clin Med Insights Endocrinol Diabetes. 2019;12:117955141985177. doi: https://doi.org/10.1177/1179551419851770
8. Kapranov NI, Kashirskaja NJu, Asherova IK, et al. Historical and modern aspects of cystic fibrosis in Russia. Pediatricheskaya farmakologiya. 2013;6:53-60 (In Russ.)
9. Pereira SV, Ribeiro JD, Bertuzzo CS, Marson FAL. Association of clinical severity of cystic fibrosis with variants in the SLC gene family (SLC6A14, SLC26A9, SLC11A1 and SLC9A3). Gene. 2017;629:117-126. doi: https://doi.org/ 10.1016/j.gene.2017.07.068
10. Akabas MH. Cystic fibrosis transmembrane conductance regulator. Structure and function of an epithelial chloride channel. J Biol Chem. 2000;275(6):3729-3732. doi: https://doi.org/10.1074/jbc.275.6.3729
11. Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev. 2018;98(3):1493-1590. doi: https://doi.org/10.1152/physrev.00047.2017
12. Gauthier TW, Grunwell JR, Ping XD, et al. Impaired defenses of neonatal mouse alveolar macrophage with cftr deletion are modulated by glutathione and TGFβ1. Physiol Rep. 2017;5(6):e13086. doi: https://doi.org/10.14814/phy2.13086
13. Martinez AH, Mohiuddin SS. Biochemistry, Chloride Channels. In: StatPearls. Treasure Island (FL): StatPearls Publishing; July 26, 2020.
14. Thévenod F. Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am J Physiol Cell Physiol. 2002;283(3):651-672. doi: https://doi.org/10.1152/ajpcell.00600.2001
15. Krasovskiy SA, Kashirskaya NY, Chernyak AV, et al. Genetic characterization of cystic fibrosis patients in Russian Federation according to the National Register, 2014. Russ Pulmonol. 2016;26(2):133-151. (In Russ.) doi: https://doi.org/10.18093/0869-0189-2016-26-2-133-151
16. Rafeeq MM, Murad HAS. Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med. 2017;15(1):84. doi: https://doi.org/10.1186/s12967-017-1193-9
17. Schram CA. Atypical cystic fibrosis: identification in the primary care setting. Can Fam Physician. 2012;58(12):1341-e704.
18. Caldwell DM, McNamara DH. Fibrocystic disease of the pancreas and diabetes in an adult with unusual pulmonary manifestations. Calif Med. 1958;89(4):280-284.
19. Koivula FNM, McClenaghan NH, Harper AGS, Kelly C. Islet-intrinsic effects of CFTR mutation. Diabetologia. 2016;59(7):1350-1355. doi: https://doi.org/10.1007/s00125-016-3936-1
20. Granados A, Chan CL, Ode KL, et al. Cystic fibrosis related diabetes: Pathophysiology, screening and diagnosis. J Cyst Fibros. 2019;18(2):3-9. doi: https://doi.org/10.1016/j.jcf.2019.08.016
21. Norris AW, Ode KL, Merjaneh L, et al. Survival in a bad neighborhood: pancreatic islets in cystic fibrosis. J Endocrinol. 2019;241(1):R35-R50. doi: https://doi.org/10.1530/JOE-18-0468
22. Bogdani M, Blackman SM, Ridaura C, et al. Structural abnormalities in islets from very young children with cystic fibrosis may contribute to cystic fibrosis-related diabetes. Sci Rep. 2017;7(1):17231. doi: https://doi.org/10.1038/s41598-017-17404-z
23. Barg S, Huang P, Eliasson L, et al. Priming of insulin granules for exocytosis by granular Cl(-) uptake and acidification. J Cell Sci. 2001;114(11):2145-2154.
24. Ntimbane T, Mailhot G, Spahis S, et al. CFTR silencing in pancreatic β-cells reveals a functional impact on glucosestimulated insulin secretion and oxidative stress response. Am J Physiol Endocrinol Metab. 2016;310(3):E200-E212. doi: https://doi.org/10.1152/ajpendo.00333.2015
25. Uc A, Olivier AK, Griffin MA, et al. Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass. Clin Sci (Lond). 2015;128(2):131-142. doi: https://doi.org/10.1042/CS20140059
26. Edlund A, Esguerra JL, Wendt A, et al. CFTR and Anoctamin 1 (ANO1) contribute to cAMP amplified exocytosis and insulin secretion in human and murine pancreatic beta-cells. BMC Med. 2014;12:87. doi: https://doi.org/10.1186/1741-7015-12-87
27. Kessler L, Abély M. Atteinte pancréatique exocrine et endocrine dans la mucoviscidose [Pancreatic infringement exocrine and endocrine in cystic fibrosis]. Arch Pediatr. 2016;23(12S):12S21-12S32. doi: https://doi.org/10.1016/S0929-693X(17)30059-3
28. Edlund A, Barghouth M, Hühn M, et al. Defective exocytosis and processing of insulin in a cystic fibrosis mouse model. J Endocrinol. 2019;241(1):45-57. doi: https://doi.org/10.1530/JOE-18-0570
29. Best L. Glucose-induced electrical activity in rat pancreatic beta-cells: dependence on intracellular chloride concentration. J Physiol. 2005;568(1):137-144. doi: https://doi.org/10.1113/jphysiol.2005.093740
30. Guo JH, Chen H, Ruan YC, et al. Glucose-induced electrical activities and insulin secretion in pancreatic islet β-cells are modulated by CFTR. Nat Commun. 2014;5(1):4420. doi: https://doi.org/10.1038/ncomms5420
31. Kayani K, Mohammed R, Mohiaddin H. Cystic FibrosisRelated Diabetes. Front Endocrinol (Lausanne). 2018;9(1):4420. doi: https://doi.org/10.3389/fendo.2018.00020
32. Aksit MA, Pace RG, Vecchio-Pagán B, et al. Genetic Modifiers of Cystic Fibrosis-Related Diabetes Have Extensive Overlap With Type 2 Diabetes and Related Traits. J Clin Endocrinol Metab. 2020;105(5):1401-1415. doi: https://doi.org/10.1210/clinem/dgz102
33. Lam AN, Aksit MA, Vecchio-Pagan B, et al. Increased expression of anion transporter SLC26A9 delays diabetes onset in cystic fibrosis. J Clin Invest. 2020;130(1):272-286. doi: https://doi.org/10.1172/JCI129833
34. Blackman SM, Tangpricha V. Endocrine Disorders in Cystic Fibrosis. Pediatr Clin North Am. 2016;63(4):699-708. doi: https://doi.org/10.1016/j.pcl.2016.04.009
35. Onady GM, Stolfi A. Insulin and oral agents for managing cystic fibrosis-related diabetes. Cochrane Database Syst Rev. 2016;9(1):4420. doi: https://doi.org/10.1002/14651858.CD004730.pub4
36. Frost F, Jones GH, Dyce P, et al. Loss of incretin effect contributes to postprandial hyperglycaemia in cystic fibrosis-related diabetes. Diabet Med. 2019;36(11):1367-1374. doi: https://doi.org/10.1111/dme.14121
37. Rosenecker J, Eichler I, Bärmeier H, von der Hardt H. Diabetes mellitus and cystic fibrosis: comparison of clinical parameters in patients treated with insulin versus oral glucose-lowering agents. Pediatr Pulmonol. 2001;32(5):351-355. doi: https://doi.org/10.1002/ppul.1143
38. Conwell LS, Chang AB. Bisphosphonates for osteoporosis in people with cystic fibrosis. Cochrane Database Syst Rev. 2014;9(1):4420. doi: https://doi.org/10.1002/14651858.CD002010.pub4
39. Pereira SV, Ribeiro JD, Bertuzzo CS, Marson FAL. Association of clinical severity of cystic fibrosis with variants in the SLC gene family (SLC6A14, SLC26A9, SLC11A1 and SLC9A3). Gene. 2017;629:117-126. doi: https://doi.org/10.1016/j.gene.2017.07.068
40. Marson FAL. Disease-modifying genetic factors in cystic fibrosis. Curr Opin Pulm Med. 2018;24(3):296-308. doi: https://doi.org/10.1097/MCP.0000000000000479
41. Shead EF, Haworth CS, Condliffe AM, et al. Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in human bone. Thorax. 2007;62(7):650-651. doi: https://doi.org/10.1136/thx.2006.075887
42. Gershtein ES, Timofeev YuS, Zuev AA, Kushlinskii NE. RANK/RANKL/OPG ligand-receptor system and its role in primary bone neoplasms (literature analysis and own data). Advances in Molecular Oncology. 2015;2(3):51-59. (In Russ.) doi: https://doi.org/ 10.17650/2313-805X.2015.2.3.51-59
43. Grebennikova TA, Belaya ZE, Rozhinskaya LY, Melnichenko GA. The canonical Wnt/β-catenin pathway: From the history of its discovery to clinical application. Terapevticheskiy arkhiv. 2016:88(10):74-81. (In Russ.) doi: https://doi.org/10.17116/terarkh201688674-81
44. Mailyan E.A. Multifactorial pathogenesis of osteoporosis and the role of genes of canonical wnt-signaling pathway. Osteoporosis and Bone Diseases. 2015;18(2):15-19. (In Russ) doi: https://doi.org/10.14341/osteo2015215-19
45. Chen H, Hu B, Lv X, et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun. 2019;10(1):181. doi: https://doi.org/10.1038/s41467-018-08097-7
46. Velard F, Delion M, Le Henaff C, et al. Cystic fibrosis and bone disease: defective osteoblast maturation with the F508del mutation in cystic fibrosis transmembrane conductance regulator. Am J Respir Crit Care Med. 2014;189(6):746-748. doi: https://doi.org/10.1164/rccm.201312-2144LE
47. Le Heron L, Guillaume C, Velard F, et al. Cystic fibrosis transmembrane conductance regulator (CFTR) regulates the production of osteoprotegerin (OPG) and prostaglandin (PG) E2 in human bone. J Cyst Fibros. 2010;9(1):69-72. doi: https://doi.org/10.1016/j.jcf.2009.11.005
48. Le Henaff C, Mansouri R, Modrowski D, et al. Increased NF-κB Activity and Decreased Wnt/β-Catenin Signaling Mediate Reduced Osteoblast Differentiation and Function in ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mice. J Biol Chem. 2015;290(29):18009-18017. doi: https://doi.org/10.1074/jbc.M115.646208
49. Haworth CS, Webb AK, Egan JJ, et al. Bone histomorphometry in adult patients with cystic fibrosis. Chest. 2000;118(2):434-439. doi: https://doi.org/10.1378/chest.118.2.434
50. Putman MS, Anabtawi A, Le T, et al. Cystic fibrosis bone disease treatment: Current knowledge and future directions. J Cyst Fibros. 2019;18(2):S56-S65. doi: https://doi.org/10.1016/j.jcf.2019.08.017
51. de Souza DAS, Faucz FR, Pereira-Ferrari L, et al. Congenital bilateral absence of the vas deferens as an atypical form of cystic fibrosis: reproductive implications and genetic counseling. Andrology. 2018;6(1):127-135. doi: https://doi.org/10.1111/andr.12450
52. Cai H, Qing X, Niringiyumukiza JD, et al. CFTR variants and renal abnormalities in males with congenital unilateral absence of the vas deferens (CUAVD): a systematic review and metaanalysis of observational studies. Genet Med. 2019;21(4):826-836. doi: https://doi.org/10.1038/s41436-018-0262-7
53. Bieth E, Hamdi SM, Mieusset R. Genetics of the congenital absence of the vas deferens. Hum Genet. 2021;140(1):59-76. doi: https://doi.org/10.1007/s00439-020-02122-w
54. Chen H, Ruan YC, Xu WM, et al. Regulation of male fertility by CFTR and implications in male infertility. Hum Reprod Update. 2012;18(6):703-713. doi: https://doi.org/10.1093/humupd/dms027
55. Karihaloo A, Nickel C, Cantley LG. Signals which build a tubule. Nephron Exp Nephrol. 2005;100(1):e40-e45. doi: https://doi.org/10.1159/000084111
56. Van der Ven K, Messer L, van der Ven H, et al. Cystic fibrosis mutation screening in healthy men with reduced sperm quality. Hum Reprod. 1996;11(3):513-517. doi: https://doi.org/10.1093/humrep/11.3.513
57. Sharma S, Hanukoglu A, Hanukoglu I. Localization of epithelial sodium channel (ENaC) and CFTR in the germinal epithelium of the testis, Sertoli cells, and spermatozoa. J Mol Histol. 2018;49(2):195-208. doi: https://doi.org/10.1007/s10735-018-9759-2
58. Zhang HL, Zhang Z, Jiang H, et al. Zhonghua Nan Ke Xue. 2016;22(2):110-115.
59. Xu WM, Chen J, Chen H, et al. Defective CFTR-dependent CREB activation results in impaired spermatogenesis and azoospermia. PLoS One. 2011;6(5):e19120. doi: https://doi.org/10.1371/journal.pone.0019120
60. Kerr GE, Young JC, Horvay K, et al. Regulated Wnt/Beta-Catenin Signaling Sustains Adult Spermatogenesis in Mice1. Biol Reprod. 2014;90(1):59-76. doi: https://doi.org/10.1095/biolreprod.112.105809
Supplementary files
Review
For citations:
Chagay N.B., Khayt G.Ya., Vdovina T.M., Shaforost A.A. Cystic fibrosis being a polyendocrine disease (Review). Problems of Endocrinology. 2021;67(2):28-39. (In Russ.) https://doi.org/10.14341/probl12694
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).




































.jpg)

