Bradykinin and angiotensin-converting enzyme in serum of patients with diabetic retinopathy and the prognosis of diabetic macular edema development (pilot study)
https://doi.org/10.14341/probl12762
Abstract
BACKGROUND. Diabetic macular edema (DME) is a microvascular complication of diabetic retinopathy. One of the key roles in the pathogenesis of DME may belong to the components of rennin-angiotensin and kallikrein-kinin systems: bradykinin (Bk) and angiotensin-converting enzyme (ACE).
PURPOSE. To determine the Bk and ACE concentration and ACE activity in serum of patients with proliferative diabetic retinopathy (PDR) and to estimate the significance of these parameters for the early diagnostic and prognosis of DMO.
MATERIALS AND METHODS. Serum was collected from the 2 groups of patients with II type diabetes. Group I (n=9) had DME, group II (n=27) had PDR without DME. Control group (n=14) consisted of adult volonteers without diabetes and ophthalmic diseases. Concentration of Bk and ACE was measured using ELISA kits, ACE activity was determined enzymatically with specific fluorogenic substrate.
RESULTS. Concentration of Bk in serum of patients without DME did not differ from one in controls (12,00 (9,70; 12,40) pg/ml) while all patients with DME had Bk level of 14,69 (13,68; 16,78) pg/ml that was significantly higher (p<0,01). In patients without DME ACE concentration (88,60 (77,30; 97,45) ng/ml) and ACE activity (6,8 (5,1;7,1) nmol/min·ml) were higher than normal (p<0,01) while in the case of DME concentration of ACE increased (77,36 (70,24; 86,29 ng/ml, p<0,01) and activity remained normal. The Bk/ACE concentrations ratio decreased in patients without DME and increased in those having DME.
CONCLUSION. Patients with DME have increased Bk concentration along with nearly normal ACE concentration that indicate predominance of Bk synthesis over its degradation that may lead to the DME development. The Bk/ACE ratio decrease in patients with uncomplicated PDR and increase significantly in ones with DME. It means that determination of Bk in serum of patients with PDR may be used for the prediction of DME development. The Bk/ACE concentrations ratio may be even more informative.
About the Authors
V. V. NeroevRussian Federation
Vladimir V. Neroev, MD, PhD, prof., acad.
eLibrary SPIN: 5214-4134
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
N. B. Chesnokova
Russian Federation
Natalia B. Chesnokova, MD, PhD, prof.
eLibrary SPIN: 8705-7248
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
O. A. Kost
Russian Federation
Olga A. Kost, PhD
eLibrary SPIN: 6370-5935
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
T. D. Okhotsimskaya
Russian Federation
Tatyana D. Okhotsimskaya, MD, PhD
eLibrary SPIN: 9917-7103
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
T. A. Pavlenko
Russian Federation
Tatyana А. Pavlenko, MD, PhD
eLibrary SPIN: 7940-3050
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
O. V. Beznos
Russian Federation
Olga V. Beznos, PhD
14/19 Sadovaya-Chernogryazskaya street, 105062, Moscow
eLibrary SPIN: 7894-5162
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
P. V. Binevsky
Russian Federation
Peter V. Binevsky, PhD
eLibrary SPIN: 7602-0234
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
O. A. Lisovskaya
Russian Federation
Olga A. Lisovskaya, PhD
eLibrary SPIN: 1223-8530
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
References
1. Tarasov MS. Prognosticheskie kriterii effectivnosti lechenia diabeticheskogo makularnogo oteka. [dissertation]. Moscow; 2019. (in Russ.)]. Доступно по: https://viewer.rusneb.ru/ru/rsl01008589684. Ссылка активна на 13.07.2021.
2. Lipatov DV, Alexandrova VK, Bessmertnaya EG, et al. Epidemiology and registry of diabetic retinopathy and its complications in the Russian Federation. Modern technologies in ophthalmology. 2020;4(35):26-27. (in Russ.)]. doi: https://doi.org/10.25276/2312-4911-2020-4-26-27
3. Klein R, Knudtson MD, Lee KE, et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: The Twenty-five-Year Incidence of Macular Edema in Persons with Type 1 Diabetes. Ophthalmology. 2009;116(3):497-503. doi: https://doi.org/10.1016/j.ophtha.2008.10.016
4. Bikbov MM, Fayzrakhmanov RR, Zaynullin RM, et al. Macular edema as a manifestation of diabetic retinopathy. Diabetes mellitus. 2017;20(4):263-269. (In Russ.) doi: https://doi.org/10.14341/DM8328
5. Liu J, Feener EP. Plasma kallikrein-kinin system and diabetic retinopathy. Biol Chem. 2013;394(3):319-328. doi: https://doi.org/10.1515/hsz-2012-0316
6. Aydin E, Demir HD, Sahin S. Plasma and aqueous humor angiotensin-converting enzyme levels in patients with diabetic retinopathy. Curr Eye Res. 2010;35(3):230-234. doi: https://doi.org/10.3109/02713680903484242
7. Kim EJ, Lin WV, Rodriguez SM, et al. Treatment of diabetic macular edema. Curr Diab Rep. 2019;19(9):68. doi: https://doi.org/10.1007/s11892-019-1188-4
8. Li Y, Yan Z, Chaudry K, Kazlauskas A. The rennin-angiotensinaldosteron system (RAAS) is one of the effectors by which vascular endothelial growth factor (VEGF)/anti-VEGF controls the endothelial cell barrier. Am J Pathol. 2020;190(9):1971-1981. doi: https://doi.org/10.1016/j.ajpath.2020.06.004
9. Abdulaal M, Haddad NM, Sun JK, Silva PS. The role of plasma kallikrein-kinin pathway in the development of diabetic retinopathy: pathophysiology and therapeutic approaches. Semin Ophthalmol. 2016; 31(1-2):19-24. doi: https://doi.org/10.3109/08820538.2015.1114829
10. Clermont A, Murugesan N, Zhou Q, et al. Plasma kallikrein mediates Vascular Endothelial Growth Factor-induced retinal dysfunction and thickening. Invest Ophthalmol Vis Sci. 2016;57(6):2390-2399. doi: https://doi.org/10.1167/iovs.15-18272
11. Kita T, Clermont A, Murugesan N, et al. Plasma KallikreinKinin System as a VEGF-independent mediator of diabetic macular edema. Diabetes. 2015;64:3588-3599. doi: https://doi.org/10.2337/db15-0317
12. Bhatwadekar AD, Kansara VS, Ciulla TA. Investigational plasma kallikrein inhibitors for the treatment of diabetic macular edema: an expert assessment. Expert Opin Investig Drugs. 2020;29(3):237-244. doi: https://doi.org/10.1080/13543784.2020.1723078
13. Morand-Contant M, Anand-Srivastava MB, Couture R. Kinin B1 receptor upregulation byangiotensin II and endothelin-1 in rat vascularsmooth muscle cells: receptors and mechanisms. Am J Physiol Heart Circ Physiol. 2010;299(5):1625-1632. doi: https://doi.org/10.1152/ajpheart.00735.2009
14. Phipps JA, Jobling AI, Greferath U, et al. Alternative pathways in the development of diabetic retinopathy: the renin-angiotensin and kallikrein-kinin systems. Clin Exp Optom. 2012;95(3):282-289. doi: https://doi.org/10.1111/j.1444-0938.2012.00747.x
15. Neroev VV, Chesnokova NB, Okhotsimskaya TD, et al. Activity of angiotensin converting enzyme in blood and tear in patients with diabetic retinopathy. Vestnik oftalmologii. 2006;122(3):11-14. (in Russ.)
16. Neroev VV, Chesnokova NB, Okhotsimskaya TD, et al. Effect of intravitreal administration of an angiogenesis inhibitor on the concentration of angiotensin-converting enzyme in blood and lacrimal fluid in patients with diabetic macular edema. Problems of endocrinology. 2019;65(2):72-78. (In Russ.) doi: https://doi.org/10.14341/probl9710
17. Conroy JM, Hartley JL, Soffer RL. Canine pulmonary angiotensinconverting enzyme. Physicochemical, catalytic and immunological properties. Biochim Biophys Acta-Enzymol. 1978;524(2):403-412. doi: https://doi.org/10.1016/0005-2744(78)90177-8
18. Feener EP, Zhou Q, Fickweiler W. Role of plasma kallikrein in diabetes and metabolism. Thromb Haemost. 2013;110(3):434-441. doi: https://doi.org/10.1160/TH13-02-0179
19. Marceau F, Rivard GE, Gauthier JM, et al. Measurement of bradykinin formation and degradation in blood plasma: relevance for acquired angioedema associated with angiotensin converting enzyme inhibition and for hereditary angioedema due to factor XII or plasminogen gene variants. Front Med (Lausanne). 2020;7:358. doi: https://doi.org/10.3389/fmed.2020.00358
20. Danilov SM, Balyasnikova IV, Albrecht RF, Kost OA. Simultaneous determination of ACE activity with 2 substrates provides information on the status of somatic ACE and allows detection of inhibitors in human blood. J Cardiovasc Pharmacol. 2008;52(1):90-103. doi: https://doi.org/10.1097/FJC.0b013e31817fd3bc
Supplementary files
|
1. Фото 1. Сетчатка при ПДР без признаков отека нейроэпителия. | |
Subject | ||
Type | Other | |
View
(347KB)
|
Indexing metadata ▾ |
|
2. Фото 2. Кистовидный макулярный отек. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(326KB)
|
Indexing metadata ▾ |
Review
For citations:
Neroev V.V., Chesnokova N.B., Kost O.A., Okhotsimskaya T.D., Pavlenko T.A., Beznos O.V., Binevsky P.V., Lisovskaya O.A. Bradykinin and angiotensin-converting enzyme in serum of patients with diabetic retinopathy and the prognosis of diabetic macular edema development (pilot study). Problems of Endocrinology. 2021;67(4):13-19. (In Russ.) https://doi.org/10.14341/probl12762

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).