Imeglimin: features of the mechanism of action and potential benefits
https://doi.org/10.14341/probl12868
Abstract
Imeglimin is the first drug in a new class of tetrahydrotriazine-containing oral hypoglycemic agents called «glimines». Its mechanism of action is aimed at achieving a double effect, firstly, to improve the function of beta cells of the pancreas, and secondly, to enhance the action of insulin in key tissues, including the liver and skeletal muscles. At the cellular level, imeglimin modulates mitochondrial function, which leads to an improvement in cellular energy metabolism, as well as to the protection of cells from death in conditions of excessive accumulation of reactive oxygen species. It is important to note that the mechanism of action of imeglimin differs from existing drugs used for the treatment of type 2 diabetes mellitus. Like glucagon-like peptide-1 receptor agonists, imeglimin enhances insulin secretion in an exclusively glucose-dependent manner, but their mechanism of action at the cellular level diverges. Sulfonylureas and glinides function by closing ATP-sensitive potassium channels to release insulin, which is also different from imeglimin. Compared with metformin, the effect of imeglimine is also significantly different. Other major classes of oral antihypertensive agents, such as sodium-glucose transporter-2 inhibitors, thiazolidinediones and α glucosidase inhibitors mediate their action through mechanisms that do not overlap with imeglimine. Given such differences in the mechanisms of action, imeglimin can be used as part of combination therapy, for example with sitagliptin and metformin. The imeglimine molecule is well absorbed (Tmax-4), and the half-life is 5–6 hours, is largely excreted through the kidneys, and also has no clinically significant interactions with either metformin or sitagliptin.
About the Authors
K. O. KuznetsovRussian Federation
Kirill O. Kuznetsov
119021, Moscow, Holzunova, 7
A. A. Saetova
Russian Federation
Amina A. Saetova
Ufa
E. I. Mahmutova
Russian Federation
Elina I. Mahmutova
Ufa
A. G. Bobrik
Russian Federation
Andrey G. Bobrik
Ufa
D. V. Bobrik
Russian Federation
Darya V. Bobrik
Ufa
I. R. Nagaev
Russian Federation
Ildar R. Nagaev
Ufa
A. D. Khamitova
Russian Federation
Arina D. Khamitova
Ufa
A. M. Arapieva
Russian Federation
Aminat M. Arapieva
Ufa
References
1. Pirags V, Lebovitz H, Fouqueray P. Imeglimin, a novel glimin oral antidiabetic, exhibits a good efficacy and safety profile in type 2 diabetic patients. Diabetes Obes Metab. 2012;14(9):852-858. doi: https://doi.org/10.1111/j.1463-1326.2012.01611.x
2. Fouqueray P, Pirags V, Diamant M, et al. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with sitagliptin monotherapy. Diabetes Care. 2014;37(7):1924-1930. doi: https://doi.org/10.2337/dc13-2349
3. Crabtree TS, DeFronzo RA, Ryder REJ, Bailey CJ. Imeglimin, a novel, first in-class, blood glucose-lowering agent: a systematic review and meta-analysis of clinical evidence. Br J Diabetes. 2020;20(1):28-31. doi: https://doi.org/10.15277/bjd.2020.247
4. Yaribeygi H, Maleki M, Sathyapalan T, et al. Molecular Mechanisms by Which Imeglimin Improves Glucose Homeostasis. J Diabetes Res. 2020;2020:8768954. doi: https://doi.org/10.1155/2020/8768954
5. Herder C, Roden M. Genetics of type 2 diabetes: pathophysiologic and clinical relevance. Eur J Clin Invest. 2011;41(6):679-692. doi: https://doi.org/10.1111/j.1365-2362.2010.02454.x
6. DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1982;23(4):313-319. doi: https://doi.org/10.1007/BF00253736
7. Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 2012;2012:703538. doi: https://doi.org/10.1155/2012/703538
8. Haythorne E, Rohm M, van de Bunt M, et al. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells. Nat Commun. 2019;10(1):2474. doi: https://doi.org/10.1038/s41467-019-10189-x
9. Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. Adv Exp Med Biol. 2017;982:465-520. doi: https://doi.org/10.1007/978-3-319-55330-6_25
10. Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018;98(4):2133-2223. doi: https://doi.org/10.1152/physrev.00063.2017
11. Pinti MV, Fink GK, Hathaway QA, et al. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab. 2019;316(2):E268-E285. doi: https://doi.org/10.1152/ajpendo.00314.2018
12. Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018;98(4):2133-2223. doi: https://doi.org/10.1152/physrev.00063.2017
13. Muoio DM. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell. 2014;159(6):1253-1262. doi: https://doi.org/10.1016/j.cell.2014.11.034
14. Anderson EJ, Lustig ME, Boyle KE, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119(3):573-581. doi: https://doi.org/10.1172/JCI37048
15. Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9-31. doi: https://doi.org/10.1038/s42255-019-0161-5
16. Okabe K, Yaku K, Tobe K, Nakagawa T. Implications of altered NAD metabolism in metabolic disorders. J Biomed Sci. 2019;26(1):34. doi: https://doi.org/10.1186/s12929-019-0527-8
17. Otonkoski T, Beattie GM, Mally MI, et al. Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J Clin Invest. 1993;92(3):1459-1466. doi: https://doi.org/10.1172/JCI116723
18. Clapham JC. Sixty Years of Drug Discovery for Type 2 Diabetes: Where Are We Now? Methods Mol Biol. 2020;2076:1-30. doi: https://doi.org/10.1007/978-1-4939-9882-1_1
19. Araki E, Haneda M, Kasuga M, et al. New glycemic targets for patients with diabetes from the Japan Diabetes Society. J Diabetes Investig. 2017;8(1):123-125. doi: https://doi.org/10.1111/jdi.12600
20. Pacini G, Mari A, Fouqueray P, et al. Imeglimin increases glucosedependent insulin secretion and improves β-cell function in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(6):541-545. doi: https://doi.org/10.1111/dom.12452
21. Fouqueray P, Leverve X, Fontaine E, et al. Imeglimin ‐ a new oral anti‐diabetic that targets the three key defects of type 2 diabetes. J Diabetes Metab. 2011;2(4). doi: https://doi.org/10.4172/2155-6156.1000126
22. Hallakou‐Bozec S, Kergoat M, Moller DE, Bolze S. Imeglimin preserves islet β‐cell mass in Type 2 diabetic ZDF rats. Endocrinol Diabetes Metab. 2021;4(2). doi: https://doi.org/10.1002/edm2.193
23. Perry RJ, Cardone RL, Petersen MC, et al. Imeglimin lowers glucose primarily by amplifying glucose-stimulated insulin secretion in highfat-fed rodents. Am J Physiol Endocrinol Metab. 2016;311(2):461-470. doi: https://doi.org/10.1152/ajpendo.00009.2016
24. Vial G, Chauvin MA, Bendridi N, et al. Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model. Diabetes. 2015;64(6):2254-2264. doi: https://doi.org/10.2337/db14-1220
25. Hallakou-Bozec S, Kergoat M, Fouqueray P, et al. Imeglimin amplifies glucose-stimulated insulin release from diabetic islets via a distinct mechanism of action. PLoS One. 2021;16(2):e0241651. doi: https://doi.org/10.1371/journal.pone.0241651
26. Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of betacell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes. 1998;47(3):358-364. doi: https://doi.org/10.2337/diabetes.47.3.358
27. Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402-2410. doi: https://doi.org/10.1210/jcem.85.7.6661
28. Hallakou-Bozec S, Vial G, Kergoat M, et al. Mechanism of action of Imeglimin: A novel therapeutic agent for type 2 diabetes. Diabetes Obes Metab. 2021;23(3):664-673. doi: https://doi.org/10.1111/dom.14277
29. Stumvoll M, Van Haeften T, Fritsche A, Gerich J. Oral glucose tolerance test indexes for insulin sensitivity and secretion based on various availabilities of sampling times. Diabetes Care. 2001;24(4):796-797. doi: https://doi.org/10.2337/diacare.24.4.796
30. Vial G, Dubouchaud H, Leverve XM. Liver mitochondria and insulin resistance. Acta Biochim Pol. 2010;57(4):389-492. doi: https://doi.org/10.18388/abp.2010_2422
31. Cantó C, Menzies KJ, Auwerx J. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015;22(1):31-53. doi: https://doi.org/10.1016/j.cmet.2015.05.023
32. Detaille D, Vial G, Borel AL, et al. Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration. Cell Death Discov. 2016;2:15072. doi: https://doi.org/10.1038/cddiscovery.2015.72
33. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626-629. doi: https://doi.org/10.1126/science.1099320
34. Javadov S, Karmazyn M. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem. 2007;20(1-4):1-22. doi: https://doi.org/10.1159/000103747
35. Sliwinska A, Drzewoski J. Molecular action of metformin in hepatocytes: an updated insight. Curr Diabetes Rev. 2015;11(3):175-181. doi: https://doi.org/10.2174/1573399811666150325233108
36. Vial G, Lamarche F, Cottet-Rousselle C, et al. The mechanism by which imeglimin inhibits gluconeogenesis in rat liver cells. Endocrinol Diabetes Metab. 2021;4(2):e00211. doi: https://doi.org/10.1002/edm2.211
37. Dell’Aglio DM, Perino LJ, Kazzi Z, et al. Acute metformin overdose: examining serum pH, lactate level, and metformin concentrations in survivors versus nonsurvivors: a systematic review of the literature. Ann Emerg Med. 2009;54(6):818-823. doi: https://doi.org/10.1016/j.annemergmed.2009.04.023
38. DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism. 2016;65(2):20-29. doi: https://doi.org/10.1016/j.metabol.2015.10.014
39. Madiraju AK, Erion DM, Rahimi Y, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510(7506):542-546. doi: https://doi.org/10.1038/nature13270
40. Katsyuba E, Mottis A, Zietak M, et al. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature. 2018;563(7731):354-359. doi: https://doi.org/10.1038/s41586-018-0645-6
41. Kato I, Takasawa S, Akabane A, et al. Regulatory role of CD38 (ADPribosyl cyclase/cyclic ADP-ribose hydrolase) in insulin secretion by glucose in pancreatic beta cells. Enhanced insulin secretion in CD38- expressing transgenic mice. J Biol Chem. 1995;270(50):30045-30050. doi: https://doi.org/10.1074/jbc.270.50.30045
42. Takasawa S, Nata K, Yonekura H, Okamoto H. Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science. 1993;259(5093):370-373. doi: https://doi.org/10.1126/science.8420005
43. Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol. 2021;22(2):142-158. doi: https://doi.org/10.1038/s41580-020-00317-7
44. Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonylurea stimulation of insulin secretion. Diabetes. 2002;51(3):368-376. doi: https://doi.org/10.2337/diabetes.51.2007.s368
45. Kuefner MS. Secretory Phospholipase A2s in Insulin Resistance and Metabolism. Front Endocrinol (Lausanne). 2021;12:732726. doi: https://doi.org/10.3389/fendo.2021.732726
46. Jensen MV, Joseph JW, Ronnebaum SM, et al. Metabolic cycling in control of glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab. 2008;295(6):1287-1297. doi: https://doi.org/10.1152/ajpendo.90604.2008
47. Takeuchi M, Yamamoto T. Apoptosis induced by NAD depletion is inhibited by KN-93 in a CaMKII-independent manner. Exp Cell Res. 2015;335(1):62-67. doi: https://doi.org/10.1016/j.yexcr.2015.05.019
48. Pittelli M, Felici R, Pitozzi V, et al. Pharmacological effects of exogenous NAD on mitochondrial bioenergetics, DNA repair, and apoptosis. Mol Pharmacol. 2011;80(6):1136-1146. doi: https://doi.org/10.1124/mol.111.073916
49. Lachaux M, Soulié M, Hamzaoui M, et al. Short-and long-term administration of imeglimin counters cardiorenal dysfunction in a rat model of metabolic syndrome. Endocrinol Diabetes Metab. 2020;3(3):e00128. doi: https://doi.org/10.1002/edm2.128
50. Dubourg J, Perrimond-Dauchy S, Felices M, et al. Absence of QTc prolongation in a thorough QT study with imeglimin, a first in class oral agent for type 2 diabetes mellitus. Eur J Clin Pharmacol. 2020;76(10):1393-1400. doi: https://doi.org/10.1007/s00228-020-02929-6
51. Clémence C, Fouqueray P, Sébastien B. In Vitro Investigation, Pharmacokinetics, and Disposition of Imeglimin, a Novel Oral Antidiabetic Drug, in Preclinical Species and Humans. Drug Metab Dispos. 2020;48(12):1330-1346. doi: https://doi.org/10.1124/dmd.120.000154
52. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577-1585. doi: https://doi.org/10.1007/s00125-017-4342-z
53. Marchetti P, Del Guerra S, Marselli L, et al. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab. 2004;89(11):5535-5541. doi: https://doi.org/10.1210/jc.2004-0150
54. Lablanche S, Cottet-Rousselle C, Lamarche F, et al. Protection of pancreatic INS-1 β-cells from glucose- and fructoseinduced cell death by inhibiting mitochondrial permeability transition with cyclosporin A or metformin. Cell Death Dis. 2011;2(3):e134. doi: https://doi.org/10.1038/cddis.2011.15
55. Vial G, Detaille D, Guigas B. Role of Mitochondria in the Mechanism(s) of Action of Metformin. Front Endocrinol (Lausanne). 2019;10:294. doi: https://doi.org/10.3389/fendo.2019.00294
56. McKiney JM, Irwin N, Flatt PR, et al. Acute and long-term effects of metformin on the function and insulin secretory responsiveness of clonal β-cells. Biol Chem. 2010;391(12):1451-1459. doi: https://doi.org/10.1515/BC.2010.139
57. Fouqueray P, Pirags V, Inzucchi SE, et al. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Diabetes Care. 2013;36(3):565-568. doi: https://doi.org/10.2337/dc12-0453
58. Prophylaxis of diabetes mellitus type 2: the role and place of Metformin. Endokrinologiya: Novosti. Mneniya. Obuchenie. 2017;18(1):78-87. (In Russ.).
59. US Food and Drug Administration. Glimeperide Product Label Volume 2020, 2016.
60. US Food and Drug Administration. Jardiance (Empagliflozin) Product Label Volume 2020, 2014.
61. Idris I, Donnelly R. Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes Metab. 2009;11(2):79-88. doi: https://doi.org/10.1111/j.1463-1326.2008.00982.x
62. US Food and Drug Administration. Acarbose Product Label; 2020, 2011.
63. Derosa G, Maffioli P. Efficacy and safety profile evaluation of acarbose alone and in association with other antidiabetic drugs: a systematic review. Clin Ther. 2012;34(6):1221-1236. doi: https://doi.org/10.1016/j.clinthera.2012.04.012
64. US Food and Drug Administration. Dulaglutide Product Label; 2020, 2017.
65. US Food and Drug Administration. Actos (Pioglitazone Hydrochloride) Product Label; 2020, 1999.
66. Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev. 2014;35(6):992-1019. doi: https://doi.org/10.1210/er.2014-1035
67. US Food and Drug Administration. Actos (Pioglitazone Hydrochloride) Product Label; 2020, 1999.
68. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409-435. doi: https://doi.org/10.1146/annurev.med.53.082901.104018.
Supplementary files
|
1. Рисунок 1. Молекулярные механизмы действия имеглимина. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(365KB)
|
Indexing metadata ▾ |
Review
For citations:
Kuznetsov K.O., Saetova A.A., Mahmutova E.I., Bobrik A.G., Bobrik D.V., Nagaev I.R., Khamitova A.D., Arapieva A.M. Imeglimin: features of the mechanism of action and potential benefits. Problems of Endocrinology. 2022;68(3):57-66. (In Russ.) https://doi.org/10.14341/probl12868

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).