Preview

Problems of Endocrinology

Advanced search

Imeglimin: features of the mechanism of action and potential benefits

https://doi.org/10.14341/probl12868

Abstract

Imeglimin is the first drug in a new class of tetrahydrotriazine-containing oral hypoglycemic agents called «glimines». Its mechanism of action is aimed at achieving a double effect, firstly, to improve the function of beta cells of the pancreas, and secondly, to enhance the action of insulin in key tissues, including the liver and skeletal muscles. At the cellular level, imeglimin modulates mitochondrial function, which leads to an improvement in cellular energy metabolism, as well as to the protection of cells from death in conditions of excessive accumulation of reactive oxygen species. It is important to note that the mechanism of action of imeglimin differs from existing drugs used for the treatment of type 2 diabetes mellitus. Like glucagon-like peptide-1 receptor agonists, imeglimin enhances insulin secretion in an exclusively glucose-dependent manner, but their mechanism of action at the cellular level diverges. Sulfonylureas and glinides function by closing ATP-sensitive potassium channels to release insulin, which is also different from imeglimin. Compared with metformin, the effect of imeglimine is also significantly different. Other major classes of oral antihypertensive agents, such as sodium-glucose transporter-2 inhibitors, thiazolidinediones and α glucosidase inhibitors mediate their action through mechanisms that do not overlap with imeglimine. Given such differences in the mechanisms of action, imeglimin can be used as part of combination therapy, for example with sitagliptin and metformin. The imeglimine molecule is well absorbed (Tmax-4), and the half-life is 5–6 hours, is largely excreted through the kidneys, and also has no clinically significant interactions with either metformin or sitagliptin.

About the Authors

K. O. Kuznetsov
N.I. Pirogov Russian national research medical university
Russian Federation

Kirill O. Kuznetsov

119021, Moscow, Holzunova, 7



A. A. Saetova
Bashkir state medical university
Russian Federation

Amina A. Saetova

 Ufa



E. I. Mahmutova
Bashkir state medical university
Russian Federation

Elina I. Mahmutova

 Ufa



A. G. Bobrik
Bashkir state medical university
Russian Federation

Andrey G. Bobrik

 Ufa



D. V. Bobrik
Bashkir state medical university
Russian Federation

Darya V. Bobrik

 Ufa



I. R. Nagaev
Bashkir state medical university
Russian Federation

Ildar R. Nagaev

 Ufa



A. D. Khamitova
Bashkir state medical university
Russian Federation

Arina D. Khamitova

 Ufa



A. M. Arapieva
Bashkir state medical university
Russian Federation

Aminat M. Arapieva

 Ufa



References

1. Pirags V, Lebovitz H, Fouqueray P. Imeglimin, a novel glimin oral antidiabetic, exhibits a good efficacy and safety profile in type 2 diabetic patients. Diabetes Obes Metab. 2012;14(9):852-858. doi: https://doi.org/10.1111/j.1463-1326.2012.01611.x

2. Fouqueray P, Pirags V, Diamant M, et al. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with sitagliptin monotherapy. Diabetes Care. 2014;37(7):1924-1930. doi: https://doi.org/10.2337/dc13-2349

3. Crabtree TS, DeFronzo RA, Ryder REJ, Bailey CJ. Imeglimin, a novel, first in-class, blood glucose-lowering agent: a systematic review and meta-analysis of clinical evidence. Br J Diabetes. 2020;20(1):28-31. doi: https://doi.org/10.15277/bjd.2020.247

4. Yaribeygi H, Maleki M, Sathyapalan T, et al. Molecular Mechanisms by Which Imeglimin Improves Glucose Homeostasis. J Diabetes Res. 2020;2020:8768954. doi: https://doi.org/10.1155/2020/8768954

5. Herder C, Roden M. Genetics of type 2 diabetes: pathophysiologic and clinical relevance. Eur J Clin Invest. 2011;41(6):679-692. doi: https://doi.org/10.1111/j.1365-2362.2010.02454.x

6. DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1982;23(4):313-319. doi: https://doi.org/10.1007/BF00253736

7. Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 2012;2012:703538. doi: https://doi.org/10.1155/2012/703538

8. Haythorne E, Rohm M, van de Bunt M, et al. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells. Nat Commun. 2019;10(1):2474. doi: https://doi.org/10.1038/s41467-019-10189-x

9. Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. Adv Exp Med Biol. 2017;982:465-520. doi: https://doi.org/10.1007/978-3-319-55330-6_25

10. Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018;98(4):2133-2223. doi: https://doi.org/10.1152/physrev.00063.2017

11. Pinti MV, Fink GK, Hathaway QA, et al. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab. 2019;316(2):E268-E285. doi: https://doi.org/10.1152/ajpendo.00314.2018

12. Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018;98(4):2133-2223. doi: https://doi.org/10.1152/physrev.00063.2017

13. Muoio DM. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell. 2014;159(6):1253-1262. doi: https://doi.org/10.1016/j.cell.2014.11.034

14. Anderson EJ, Lustig ME, Boyle KE, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119(3):573-581. doi: https://doi.org/10.1172/JCI37048

15. Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9-31. doi: https://doi.org/10.1038/s42255-019-0161-5

16. Okabe K, Yaku K, Tobe K, Nakagawa T. Implications of altered NAD metabolism in metabolic disorders. J Biomed Sci. 2019;26(1):34. doi: https://doi.org/10.1186/s12929-019-0527-8

17. Otonkoski T, Beattie GM, Mally MI, et al. Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J Clin Invest. 1993;92(3):1459-1466. doi: https://doi.org/10.1172/JCI116723

18. Clapham JC. Sixty Years of Drug Discovery for Type 2 Diabetes: Where Are We Now? Methods Mol Biol. 2020;2076:1-30. doi: https://doi.org/10.1007/978-1-4939-9882-1_1

19. Araki E, Haneda M, Kasuga M, et al. New glycemic targets for patients with diabetes from the Japan Diabetes Society. J Diabetes Investig. 2017;8(1):123-125. doi: https://doi.org/10.1111/jdi.12600

20. Pacini G, Mari A, Fouqueray P, et al. Imeglimin increases glucosedependent insulin secretion and improves β-cell function in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(6):541-545. doi: https://doi.org/10.1111/dom.12452

21. Fouqueray P, Leverve X, Fontaine E, et al. Imeglimin ‐ a new oral anti‐diabetic that targets the three key defects of type 2 diabetes. J Diabetes Metab. 2011;2(4). doi: https://doi.org/10.4172/2155-6156.1000126

22. Hallakou‐Bozec S, Kergoat M, Moller DE, Bolze S. Imeglimin preserves islet β‐cell mass in Type 2 diabetic ZDF rats. Endocrinol Diabetes Metab. 2021;4(2). doi: https://doi.org/10.1002/edm2.193

23. Perry RJ, Cardone RL, Petersen MC, et al. Imeglimin lowers glucose primarily by amplifying glucose-stimulated insulin secretion in highfat-fed rodents. Am J Physiol Endocrinol Metab. 2016;311(2):461-470. doi: https://doi.org/10.1152/ajpendo.00009.2016

24. Vial G, Chauvin MA, Bendridi N, et al. Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model. Diabetes. 2015;64(6):2254-2264. doi: https://doi.org/10.2337/db14-1220

25. Hallakou-Bozec S, Kergoat M, Fouqueray P, et al. Imeglimin amplifies glucose-stimulated insulin release from diabetic islets via a distinct mechanism of action. PLoS One. 2021;16(2):e0241651. doi: https://doi.org/10.1371/journal.pone.0241651

26. Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of betacell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes. 1998;47(3):358-364. doi: https://doi.org/10.2337/diabetes.47.3.358

27. Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402-2410. doi: https://doi.org/10.1210/jcem.85.7.6661

28. Hallakou-Bozec S, Vial G, Kergoat M, et al. Mechanism of action of Imeglimin: A novel therapeutic agent for type 2 diabetes. Diabetes Obes Metab. 2021;23(3):664-673. doi: https://doi.org/10.1111/dom.14277

29. Stumvoll M, Van Haeften T, Fritsche A, Gerich J. Oral glucose tolerance test indexes for insulin sensitivity and secretion based on various availabilities of sampling times. Diabetes Care. 2001;24(4):796-797. doi: https://doi.org/10.2337/diacare.24.4.796

30. Vial G, Dubouchaud H, Leverve XM. Liver mitochondria and insulin resistance. Acta Biochim Pol. 2010;57(4):389-492. doi: https://doi.org/10.18388/abp.2010_2422

31. Cantó C, Menzies KJ, Auwerx J. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015;22(1):31-53. doi: https://doi.org/10.1016/j.cmet.2015.05.023

32. Detaille D, Vial G, Borel AL, et al. Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration. Cell Death Discov. 2016;2:15072. doi: https://doi.org/10.1038/cddiscovery.2015.72

33. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626-629. doi: https://doi.org/10.1126/science.1099320

34. Javadov S, Karmazyn M. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem. 2007;20(1-4):1-22. doi: https://doi.org/10.1159/000103747

35. Sliwinska A, Drzewoski J. Molecular action of metformin in hepatocytes: an updated insight. Curr Diabetes Rev. 2015;11(3):175-181. doi: https://doi.org/10.2174/1573399811666150325233108

36. Vial G, Lamarche F, Cottet-Rousselle C, et al. The mechanism by which imeglimin inhibits gluconeogenesis in rat liver cells. Endocrinol Diabetes Metab. 2021;4(2):e00211. doi: https://doi.org/10.1002/edm2.211

37. Dell’Aglio DM, Perino LJ, Kazzi Z, et al. Acute metformin overdose: examining serum pH, lactate level, and metformin concentrations in survivors versus nonsurvivors: a systematic review of the literature. Ann Emerg Med. 2009;54(6):818-823. doi: https://doi.org/10.1016/j.annemergmed.2009.04.023

38. DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism. 2016;65(2):20-29. doi: https://doi.org/10.1016/j.metabol.2015.10.014

39. Madiraju AK, Erion DM, Rahimi Y, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510(7506):542-546. doi: https://doi.org/10.1038/nature13270

40. Katsyuba E, Mottis A, Zietak M, et al. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature. 2018;563(7731):354-359. doi: https://doi.org/10.1038/s41586-018-0645-6

41. Kato I, Takasawa S, Akabane A, et al. Regulatory role of CD38 (ADPribosyl cyclase/cyclic ADP-ribose hydrolase) in insulin secretion by glucose in pancreatic beta cells. Enhanced insulin secretion in CD38- expressing transgenic mice. J Biol Chem. 1995;270(50):30045-30050. doi: https://doi.org/10.1074/jbc.270.50.30045

42. Takasawa S, Nata K, Yonekura H, Okamoto H. Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science. 1993;259(5093):370-373. doi: https://doi.org/10.1126/science.8420005

43. Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol. 2021;22(2):142-158. doi: https://doi.org/10.1038/s41580-020-00317-7

44. Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonylurea stimulation of insulin secretion. Diabetes. 2002;51(3):368-376. doi: https://doi.org/10.2337/diabetes.51.2007.s368

45. Kuefner MS. Secretory Phospholipase A2s in Insulin Resistance and Metabolism. Front Endocrinol (Lausanne). 2021;12:732726. doi: https://doi.org/10.3389/fendo.2021.732726

46. Jensen MV, Joseph JW, Ronnebaum SM, et al. Metabolic cycling in control of glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab. 2008;295(6):1287-1297. doi: https://doi.org/10.1152/ajpendo.90604.2008

47. Takeuchi M, Yamamoto T. Apoptosis induced by NAD depletion is inhibited by KN-93 in a CaMKII-independent manner. Exp Cell Res. 2015;335(1):62-67. doi: https://doi.org/10.1016/j.yexcr.2015.05.019

48. Pittelli M, Felici R, Pitozzi V, et al. Pharmacological effects of exogenous NAD on mitochondrial bioenergetics, DNA repair, and apoptosis. Mol Pharmacol. 2011;80(6):1136-1146. doi: https://doi.org/10.1124/mol.111.073916

49. Lachaux M, Soulié M, Hamzaoui M, et al. Short-and long-term administration of imeglimin counters cardiorenal dysfunction in a rat model of metabolic syndrome. Endocrinol Diabetes Metab. 2020;3(3):e00128. doi: https://doi.org/10.1002/edm2.128

50. Dubourg J, Perrimond-Dauchy S, Felices M, et al. Absence of QTc prolongation in a thorough QT study with imeglimin, a first in class oral agent for type 2 diabetes mellitus. Eur J Clin Pharmacol. 2020;76(10):1393-1400. doi: https://doi.org/10.1007/s00228-020-02929-6

51. Clémence C, Fouqueray P, Sébastien B. In Vitro Investigation, Pharmacokinetics, and Disposition of Imeglimin, a Novel Oral Antidiabetic Drug, in Preclinical Species and Humans. Drug Metab Dispos. 2020;48(12):1330-1346. doi: https://doi.org/10.1124/dmd.120.000154

52. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577-1585. doi: https://doi.org/10.1007/s00125-017-4342-z

53. Marchetti P, Del Guerra S, Marselli L, et al. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab. 2004;89(11):5535-5541. doi: https://doi.org/10.1210/jc.2004-0150

54. Lablanche S, Cottet-Rousselle C, Lamarche F, et al. Protection of pancreatic INS-1 β-cells from glucose- and fructoseinduced cell death by inhibiting mitochondrial permeability transition with cyclosporin A or metformin. Cell Death Dis. 2011;2(3):e134. doi: https://doi.org/10.1038/cddis.2011.15

55. Vial G, Detaille D, Guigas B. Role of Mitochondria in the Mechanism(s) of Action of Metformin. Front Endocrinol (Lausanne). 2019;10:294. doi: https://doi.org/10.3389/fendo.2019.00294

56. McKiney JM, Irwin N, Flatt PR, et al. Acute and long-term effects of metformin on the function and insulin secretory responsiveness of clonal β-cells. Biol Chem. 2010;391(12):1451-1459. doi: https://doi.org/10.1515/BC.2010.139

57. Fouqueray P, Pirags V, Inzucchi SE, et al. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Diabetes Care. 2013;36(3):565-568. doi: https://doi.org/10.2337/dc12-0453

58. Prophylaxis of diabetes mellitus type 2: the role and place of Metformin. Endokrinologiya: Novosti. Mneniya. Obuchenie. 2017;18(1):78-87. (In Russ.).

59. US Food and Drug Administration. Glimeperide Product Label Volume 2020, 2016.

60. US Food and Drug Administration. Jardiance (Empagliflozin) Product Label Volume 2020, 2014.

61. Idris I, Donnelly R. Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes Metab. 2009;11(2):79-88. doi: https://doi.org/10.1111/j.1463-1326.2008.00982.x

62. US Food and Drug Administration. Acarbose Product Label; 2020, 2011.

63. Derosa G, Maffioli P. Efficacy and safety profile evaluation of acarbose alone and in association with other antidiabetic drugs: a systematic review. Clin Ther. 2012;34(6):1221-1236. doi: https://doi.org/10.1016/j.clinthera.2012.04.012

64. US Food and Drug Administration. Dulaglutide Product Label; 2020, 2017.

65. US Food and Drug Administration. Actos (Pioglitazone Hydrochloride) Product Label; 2020, 1999.

66. Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev. 2014;35(6):992-1019. doi: https://doi.org/10.1210/er.2014-1035

67. US Food and Drug Administration. Actos (Pioglitazone Hydrochloride) Product Label; 2020, 1999.

68. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409-435. doi: https://doi.org/10.1146/annurev.med.53.082901.104018.


Supplementary files

1. Рисунок 1. Молекулярные механизмы действия имеглимина.
Subject
Type Исследовательские инструменты
View (365KB)    
Indexing metadata ▾

Review

For citations:


Kuznetsov K.O., Saetova A.A., Mahmutova E.I., Bobrik A.G., Bobrik D.V., Nagaev I.R., Khamitova A.D., Arapieva A.M. Imeglimin: features of the mechanism of action and potential benefits. Problems of Endocrinology. 2022;68(3):57-66. (In Russ.) https://doi.org/10.14341/probl12868

Views: 4570


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)