Preview

Problems of Endocrinology

Advanced search

Cocaine-amphetamine regulated transcript (CART) — promising omics breakthrough in the endocrinology

https://doi.org/10.14341/probl12872

Abstract

BACKGROUND: The cocaine-amphetamine regulated transcript has been discovered long time ago (circa over 25 years ago) but still stays not enough investigated. Just during last five years scientist’s society started providing interest to the genomic, proteomic and metabolic essence of the cocaine-amphetamine regulated transcript.

AIM: The evaluation of historical pathway and perspectives of the cocaine-amphetamine regulated transcript medical investigations.

MATERIALS AND METHODS: The literature search has been provided via Russian (eLibrary, CyberLeninka.ru) and international (PubMed, Cochrane Library) databases and among articles on Russian and English languages. The main criteria for article selection was free access and 2019–2021 years of publishing. Although the introduction is based on the articles published in 1989. The present article was created according to the federal project «Central and peripheral pathophysiological mechanisms of adipose tissue diseases and their clinical and hormonal manifestations» (2020–2022)

RESULTS AND CONCLUISON: It is necessary to keep on investigating genomic, proteomic and metabolomic markers because they contain important clues for successful resistance against human diseases. The 21st century is the era of transformation from simple clinical medicine to personalized science. For example, researches in the area of cocaine-amphetamine regulated transcript may result in invention of genetic medicine against dangerous metabolic diseases.

About the Authors

R. K. Mikheev
Endocrinology Research Сentre

Robert K. Mikheev, MD, resident

Moscow

SPIN-код: 9767-8468



T. I. Romantsova
Education I.M. Sechenov First Moscow State Medical University (Sechenov University)

Tatiana I. Romantsova, MD, PhD, Professor

Moscow

SPIN-код: 3855-5410



E. A. Troshina
Endocrinology Research Сentre

Ekaterina A. Troshina, MD, ScD, professor

Moscow

SPIN-код: 8821-8990



O. R. Grigoryan
Endocrinology Research Сentre

Olga R. Grigoryan, MD, PhD, professor

Moscow

SPIN-код: 3060-8242



E. N. Andreeva
Endocrinology Research Сentre

Elena N. Andreeva, MD, PhD, professor

Moscow

SPIN-код: 1239-2937



E. V. Sheremetyeva
Endocrinology Research Сentre

Ekaterina V. Sheremetyeva, MD, PhD

Moscow

SPIN-код: 9413-5136



Yu. S. Absatarova
Endocrinology Research Сentre

Yulia S. Absatarova, MD, PhD

11 Dm. Ulyanov str., 117036, Moscow

SPIN-код: 2220-9464



N. G. Mokrysheva
Endocrinology Research Сentre

Natalya G. Mokrysheva, MD, PhD, Professor

Moscow

SPIN-код: 5624-3875



References

1. Potemkin VV. Endokrinologiya. Moscow: Meditsina, 1999. (In Russ.).

2. de Herder WW. Heroes in endocrinology: Nobel Prizes. Endocr Connect. 2014;3(3):R94-R104. doi: https://doi.org/10.1530/EC-14-0070

3. Spiess J, Villarreal J, Vale W. Isolation and sequence analysis of a somatostatin-like polypeptide from ovine hypothalamus. Biochemistry. 1981;20(7):1982-1988. doi: https://doi.org/10.1021/bi00510a038

4. Yosten GLC, Haddock CJ, Harada CM, et al. Past, present and future of cocaine- and amphetamine-regulated transcript peptide. Physiol Behav. 2021;235:113380. doi: https://doi.org/10.1016/j.physbeh.2021.113380

5. Douglass J, McKinzie A, Couceyro P. PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J Neurosci. 1995;15(3):2471-2481. doi: https://doi.org/10.1523/JNEUROSCI.15-03-02471.1995

6. Soengas JL. Integration of Nutrient Sensing in Fish Hypothalamus. Front Neurosci. 2021;15. doi: https://doi.org/10.3389/fnins.2021.653928

7. Singh O, Agarwal N, Yadav A, et al. Concurrent changes in photoperiod-induced seasonal phenotypes and hypothalamic CART peptide-containing systems in night-migratory redheaded buntings. Brain Struct Funct. 2020;225(9):2775-2798. doi: https://doi.org/10.1007/s00429-020-02154-y

8. Kristensen P, Judge ME, Thim L, et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature. 1998;393(6680):72-76. doi: https://doi.org/10.1038/29993.

9. Ong ZY, McNally GP. CART in energy balance and drug addiction: Current insights and mechanisms. Brain Res. 2020;1740:146852. doi: https://doi.org/10.1016/j.brainres.2020.146852

10. Somalwar AR, Choudhary AG, Balasubramanian N, et al. Cocaine- and amphetamine-regulated transcript peptide promotes reward seeking behavior in socially isolated rats. Brain Res. 2020;1728:146595. doi: https://doi.org/10.1016/j.brainres.2019.146595

11. Romantsova TI, Volkova GE. Leptin i grelin: antagonizm i vzaimodeystvie v regulyatsii energeticheskogo obmena. Obesity and metabolism. 2005;2(2):2-9. doi: https://doi.org/10.14341/2071-8713-4924

12. Dedov II, Romantsova TI. Tsentral’nye i perifericheskie mekhanizmy regulyatsii massy tela. In: Morbidnoe ozhirenie. Ed. by Dedov II. Moscow: MIA; 2014. P. 17-56. (In Russ.).

13. Muller PA, Matheis F, Schneeberger M, et al. Microbiota-modulated CART+ enteric neurons autonomously regulate blood glucose. Science. 2020;370(6514):314-321. doi: https://doi.org/10.1126/science.abd6176

14. Lee SJ, Krieger JP, Vergara M, et al. Blunted Vagal Cocaine- and Amphetamine-Regulated Transcript Promotes Hyperphagia and Weight Gain. Cell Rep. 2020;30(6):2028-2039.e4. doi: https://doi.org/10.1016/j.celrep.2020.01.045

15. Porte D Jr, Woods SC. Regulation of food intake and body weight by insulin. Diabetologia. 1981;20(S1):274-280. doi: https://doi.org/10.1007/BF00254493

16. Mitchell CS, Begg DP. The regulation of food intake by insulin in the central nervous system. J Neuroendocrinol. 2021;33(4):e12952. doi: https://doi.org/10.1111/jne.12952

17. Zhang Z, Cao X, Bao X, et al. Cocaine- and amphetamine-regulated transcript protects synaptic structures in neurons after ischemic cerebral injury. Neuropeptides. 2020;81:102023. doi: https://doi.org/10.1016/j.npep.2020.102023

18. Jiang H, Niu F, Zheng Y, Xu Y. CART mitigates oxidative stress and DNA damage in memory deficits of APP/PS1 mice via upregulating β-amyloid metabolism-associated enzymes. Mol Med Rep. 2021;23(4):280. doi: https://doi.org/10.3892/mmr.2021.11919

19. Yosten GL, Harada CM, Haddock C, et al. GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents. J Clin Invest. 2020;130(5):2587-2592. doi: https://doi.org/10.1172/JCI133270

20. Haddock CJ, Almeida-Pereira G, Stein LM, et al. Signaling in rat brainstem via Gpr160 is required for the anorexigenic and antidipsogenic actions of cocaine- and amphetamine-regulated transcript peptide. Am J Physiol Regul Integr Comp Physiol. 2021;320(3):R236-R249. doi: https://doi.org/10.1152/ajpregu.00096.2020


Supplementary files

Review

For citations:


Mikheev R.K., Romantsova T.I., Troshina E.A., Grigoryan O.R., Andreeva E.N., Sheremetyeva E.V., Absatarova Yu.S., Mokrysheva N.G. Cocaine-amphetamine regulated transcript (CART) — promising omics breakthrough in the endocrinology. Problems of Endocrinology. 2022;68(2):4-8. (In Russ.) https://doi.org/10.14341/probl12872

Views: 2527


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)