Modern concepts of genetic and immunohistochemical features of prolactin-secreting pituitary adenomas
https://doi.org/10.14341/probl13222
Abstract
Prolactinomas are the most common secreting adenomas of the pituitary. In 20% of cases resistance to dopamine-agonists treatment is observed. Medical therapy resistance causes progression of pathological symptoms of hyperprolactinemia and negative topographic and anatomical changes of prolactinoma. The causes of ineffectiveness of dopamine agonists therapy are not fully understood as well as approaches to managing patients require clarification. Current concepts of resistance are based on the data obtained as a result of surgery or after a period of long-term ineffective therapy. Thus, it is very important to find methods of assessing the sensitivity of prolactin-secreting adenomas to drug therapy before surgical treatment. Genetic and immunohistochemical studies find special place among these methods, making it possible to predict adenoma’s response to drug therapy at early diagnostic stage. Obtained results will allow us to form personalized algorithm for managing patients.
About the Authors
A. S. ShutovaRussian Federation
Aleksandra S. Shutova.
Dmitry Ulyanov street, 11, Moscow 117036
Competing Interests:
None
L. K. Dzeranova
Russian Federation
Larisa K. Dzeranova - MD, PhD.
Moscow
Competing Interests:
None
S. Yu. Vorotnikova
Russian Federation
Svetlana Yu. Vorotnikovа.
Moscow
Competing Interests:
None
M. A. Kutin
Russian Federation
Maxim A. Kutin – PhD.
Moscow
Competing Interests:
None
E. A. Pigarova
Russian Federation
Ekaterina A. Pigarova - MD, Phd.
Moscow
Competing Interests:
None
References
1. Daly AF, Beckers A. The epidemiology of pituitary adenomas. Endocrinol Metab Clin North Am. 2020;49(3):347-355. doi: https://doi.org/10.1016/j.ecl.2020.04.002
2. Molitch ME. Diagnosis and treatment of pituitary adenomas: A review. JAMA. 2017;317(5):516-524. doi: https://doi.org/10.1001/jama.2016.19699
3. Fedorova NS, Abrosimov AY, Dzeranova LK, et al. Pituitary lactotroph adenomas resistant to dopamine agonist treatment: histological and immunohistochemical characteristics. Arkh Patol. 2018;80(3):34-39. (In Russ.). doi: https://doi.org/10.17116/patol201880334-39
4. Maiter D. Management of dopamine agonist-resistant prolactinoma. neuroendocrinology. 2019;109(1):42-50. doi: https://doi.org/10.1159/000495775
5. Donoho DA, Laws ER Jr. The role of surgery in the management of prolactinomas. Neurosurg Clin N Am. 2019;30(4):509-514. doi: https://doi.org/10.1016/j.nec.2019.05.010
6. Astafyeva LI, Kadashev BA, Kalinin PL, et al. Cerebrospinal fluid rhinorrhoea in young women after 6.5 years of therapy giant prolactinoma with Cabergolin. Endocrine Surgery. 2017;11(4):201-208. (In Russ.). doi: https://doi.org/10.14341/serg9485
7. Wong A, Eloy JA, Couldwell WT, Liu JK. Update on prolactinomas. Part 2: Treatment and management strategies. J Clin Neurosci. 2015;22(10):1568-1574. doi: https://doi.org/10.1016/j.jocn.2015.03.059
8. Di Sarno A, Landi ML, Cappabianca P, et al. Resistance to cabergoline as compared with bromocriptine in hyperprolactinemia: prevalence, clinical definition, and therapeutic strategy. J Clin Endocrinol Metab. 2001;86(11):5256-5261. doi: https://doi.org/10.1210/jcem.86.11.8054
9. Valea A, Sandru F, Petca A, et al. Aggressive prolactinoma (Review). Exp Ther Med. 2021;23(1):74. doi: https://doi.org/10.3892/etm.2021.10997
10. Caccavelli L, Morange-Ramos I, Kordon C, et al. Alteration of G alpha subunits mRNA levels in bromocriptine resistant prolactinomas. J Neuroendocrinol. 1996;8(10):737-746. doi: https://doi.org/10.1046/j.1365-2826.1996.04902.x
11. Tamagno G, Gahete MD. Pituitary Adenomas: The European Neuroendocrine Association’s Young Researcher Committee Overview Murray JF. LTP. Anterior pituitary: somatotrophs (GH) and lactotrophs (PRL). In: Litwack G, editor. Hormonal Signaling in biology and medicine: comprehensive modern endocrinology. London: Academic Press Elsevier; 2019. p. 171-201.
12. Lim CT, Korbonits M. Update on the clinicopathology of pituitary adenomas. Endocr Pract. 2018;24(5):473-488. doi: https://doi.org/10.4158/EP-2018-0034
13. Caimari F, Korbonits M. Novel genetic causes of pituitary adenomas. Clin Cancer Res. 2016;22(20):5030-5042. doi: https://doi.org/10.1158/1078-0432.CCR-16-0452
14. Vasilev V, Daly AF, Zacharieva S, Beckers A. Clinical and molecular update on genetic causes of pituitary adenomas. Horm Metab Res. 2020;52(8):553-561. doi: https://doi.org/10.1055/a-1143-5930
15. Hodson DJ, Schaeffer M, Romanò N, et al. Existence of long-lasting experience-dependent plasticity in endocrine cell networks. Nat Commun. 2012;3(1):605. doi: https://doi.org/10.1038/ncomms1612
16. Mitrofanova LB, Konovalov PV, Krylova JuS, et al. Pljurigormonal’nye kletki adenogipofiza. Novye vozmozhnosti optimizacii molekuljarnoj diagnostiki nejrojendokrinnyh opuholej. Molekuljarnaja medicina. 2017;15(6):38-45. (In Russ.).
17. Fauquier T, Rizzoti K, Dattani M, et al. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci. 2008;105(8):2907-2912. doi: https://doi.org/10.1073/pnas.0707886105
18. Moncho-Amor V, Chakravarty P, Galichet C, et al. SOX2 is required independently in both stem and differentiated cells for pituitary tumorigenesis in p27-null mice. Proc Natl Acad Sci. 2021;118(7). doi: https://doi.org/10.1073/pnas.2017115118
19. Agarwal SK, Mateo CM, Marx SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab. 2009;94(5):1826-1834. doi: https://doi.org/10.1210/jc.2008-2083
20. Li C, Xie W, Rosenblum JS, et al. Somatic SF3B1 hotspot mutation in prolactinomas. Nat Commun. 2020;11(1):2506. doi: https://doi.org/10.1038/s41467-020-16052-8
21. Miao Y, Li C, Guo J, et al. Identification of a novel somatic mutation of POU6F2 by whole-genome sequencing in prolactinoma. Mol Genet Genomic Med. 2019;7(12):e1022. doi: https://doi.org/10.1002/mgg3.1022
22. Caimari F, Korbonits M. Novel genetic causes of pituitary adenomas. Clin Cancer Res. 2016;22(20):5030-5042. doi: https://doi.org/10.1158/1078-0432.CCR-16-0452
23. Chen Y, Gao H, Xie W, et al. Genomic and transcriptomic analysis of pituitary adenomas reveals the impacts of copy number variations on gene expression and clinical prognosis among prolactin-secreting subtype. Aging (Albany NY). 2020;13(1):1276-1293. doi: https://doi.org/10.18632/aging.202304
24. Gao H, Wang F, Lan X, et al. Lower PRDM2 expression is associated with dopamine-agonist resistance and tumor recurrence in prolactinomas. BMC Cancer. 2015;15(1):272. doi: https://doi.org/10.1186/s12885-015-1267-0
Supplementary files
|
1. Figure 1. Molecular genetic regulation of pituitary embryogenesis (adapted from The Netter collection of medical illustrations: Endocrine system, Volume 2, Second Edition) | |
Subject | ||
Type | Исследовательские инструменты | |
View
(308KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Regulation of differentiation of adenohypophysis cell lines under the influence of transcription factors | |
Subject | ||
Type | Исследовательские инструменты | |
View
(115KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Pathogenesis of adenomas at different stages of pituitary development | |
Subject | ||
Type | Исследовательские инструменты | |
View
(310KB)
|
Indexing metadata ▾ |
Review
For citations:
Shutova A.S., Dzeranova L.K., Vorotnikova S.Yu., Kutin M.A., Pigarova E.A. Modern concepts of genetic and immunohistochemical features of prolactin-secreting pituitary adenomas. Problems of Endocrinology. 2023;69(3):44-50. (In Russ.) https://doi.org/10.14341/probl13222

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).