Alemtuzumab-induced Graves’ disease
https://doi.org/10.14341/probl13238
Abstract
Multiple sclerosis (MS) is a severe chronic autoimmune demyelinating disease of the central nervous system, mediated by Th1/Th17 lymphocytes as well as B lymphocytes, macrophages and other immune cells. Some patients with MS are treated with alemtuzumab, a monoclonal antibody against CD52+ cells, which belongs to the disease-modifying therapies (DMTs). The main effect of alemtuzumab is related to changes in immune recruitment. Alemtuzumab therapy can induce secondary autoimmunity against the background of immune rebalancing. The thyroid gland is generally involved in the autoimmune process. Graves’ disease (GD) develops most often, followed by autoimmune thyroiditis.
We present a clinical case of a patient with GD developed after alemtuzumab therapy for MS. The patient was referred to a radiologist at the Department of Radionuclide Therapy of Endocrinology Research Centre for radioiodine therapy (RAIT) due to relapse of thyrotoxicosis after anti-thyroid drug therapy for GD. The goal of treatment was achieved in 2 months, thyroid hormone therapy was initiated, against the background of this, there was compensation of thyroid function.
About the Authors
M. S. SheremetaRussian Federation
Marina S. Sheremeta – PhD.
Moscow
Competing Interests:
None
M. O. Korchagina
Russian Federation
Maria O. Korchagina - PhD, student.
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
None
R. M. Guseinova
Russian Federation
Raisat M. Guseinova – MD.
Moscow
Competing Interests:
None
T. E. Schmidt
Russian Federation
Tatiana E. Schmidt – PhD.
Moscow
Competing Interests:
None
K. S. Nizhegorodova
Russian Federation
Kseniya S. Nizhegorodova – MD.
Moscow
Competing Interests:
None
N. Yu. Sviridenko
Russian Federation
Natalya Yu. Sviridenko - MD, PhD, Professor.
Moscow
Competing Interests:
None
G. A. Melnichenko
Russian Federation
Galina A. Melnichenko - MD, PhD, Professor.
Moscow
Competing Interests:
None
References
1. Rassejannyj skleroz i drugie demielinizirujushhie zabolevanija. Ed. by Gusev EI, Zavalishin IA, Bojko AN. Moscow: Miklosh; 2004. — 540 p. (In Russ.).
2. Klineova S, Lublin FD. Clinical Course of Multiple Sclerosis. Cold Spring Harb Perspect Med. 2018;8(9):a028928. doi: https://doi.org/10.1101/cshperspect.a028928
3. Sawcer S. The complex genetics of multiple sclerosis: pitfalls and prospects. Brain. 2008;131(Pt12):3118-3131. doi: https://doi.org/10.1093/brain/awn081
4. ‘t Hart BA, Hintzen RQ, Laman JD. Multiple sclerosis — a response-to-damage model. Trends Mol Med. 2009;15(6):235-244. doi: https://doi.org/10.1016/j.molmed.2009.04.001
5. Demina TL, Davydovskaja MV, Hachanova NV, i dr. Rassejannyj skleroz: patogenez, diagnostika, differencial’nyj diagnoz i lechenie. Consilium medicum. 2008;(1):61-68. (In Russ.).
6. Doshi A, Chataway J. Multiple sclerosis, a treatable disease. Clin Med (Lond). 2016;16(6):s53-s59. doi: https://doi.org/10.7861/clinmedicine.16-6-s53
7. Ghezzi A. European and American Guidelines for Multiple Sclerosis Treatment. Neurol Ther. 2018;7(2):189-194. doi: https://doi.org/10.1007/s40120-018-0112-1
8. Montalban X, Gold R, Thompson AJ, et al. ECTRIMS/EAN guideline on the pharmacological treatment of people with multiple sclerosis [published correction appears in Eur J Neurol. 2018;25(3):605]. Eur J Neurol. 2018;25(2):215-237. doi: https://doi.org/10.1111/ene.13536
9. Ruck T, Bittner S, Wiendl H, Meuth SG. Alemtuzumab in multiple sclerosis: Mechanism of action and Beyond. Int J Mol Sci. 2015;16(7):16414-16439. doi: https://doi.org/10.3390/ijms160716414
10. Tuohy O, Costelloe L, Hill-Cawthorne G, et al. Alemtuzumab treatment of multiple sclerosis: long-term safety and efficacy. J Neurol Neurosurg Psychiatry. 2015;86(2):208-215. doi: https://doi.org/10.1136/jnnp-2014-307721
11. Pariani N, Willis M, Muller I, et al. Alemtuzumab-induced thyroid dysfunction exhibits distinctive clinical and immunological features. J Clin Endocrinol Metab. 2018;103(8):3010-3018. doi: https://doi.org/10.1210/jc.2018-00359
12. Havrdova E, Arnold DL, Cohen JA, et al. Alemtuzumab CARE-MS I 5-year follow-up: Durable efficacy in the absence of continuous MS therapy [published correction appears in Neurology. 2018;90(16):755]. Neurology. 2017;89(11):1107-1116. doi: https://doi.org/10.1212/WNL.0000000000004313
13. Coles AJ, Cohen JA, Fox EJ, et al. Alemtuzumab CARE-MS II 5-year follow-up: Efficacy and safety findings. Neurology. 2017;89(11):1117-1126. doi: https://doi.org/10.1212/WNL.0000000000004354
14. Khachanova NV, Bakhtiyarova KZ, Boyko AN, et al. Updated recommendations of the council of experts on the use and safety of alemtuzumab (Lemtrada). Zhurnal nevrologii i psikhiatrii im SS Korsakova. 2020;120(3):82-91. (In Russ.). doi: https://doi.org/10.17116/jnevro202012003182
15. Hemmer B, Archelos JJ, Hartung H-P. New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci. 2002;3(4):291-301. doi: https://doi.org/10.1038/nrn784
16. Neuhaus O, Archelos JJ, Hartung HP. Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection. Trends Pharmacol Sci. 2003;24(3):131-138. doi: https://doi.org/10.1016/S0165-6147(03)00028-2
17. Steinman L. Multiple sclerosis: a two-stage disease. Nat Immunol. 2001;2(9):762-764. doi: https://doi.org/10.1038/ni0901-762
18. Filippi M, Bozzali M, Rovaris M, et al. Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain. 2003;126(Pt2):433-437. doi: https://doi.org/10.1093/brain/awg038
19. Trapp BD, Ransohoff RM, Fisher E, Rudick RA. Neurodegeneration in multiple sclerosis: Relationship to neurological disability. The Neuroscientist. 1999;5(1):48-57. doi: https://doi.org/10.1177/107385849900500107
20. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-173. doi: https://doi.org/10.1016/S1474-4422(17)30470-2
21. Daniels GH, Vladic A, Brinar V, et al. Alemtuzumab-related thyroid dysfunction in a phase 2 trial of patients with relapsing-remitting multiple sclerosis. J Clin Endocrinol Metab. 2014;99(1):80-89. doi: https://doi.org/10.1210/jc.2013-2201
22. Scappaticcio L, Castellana M, Virili C, et al. Alemtuzumab-induced thyroid events in multiple sclerosis: a systematic review and meta-analysis. J Endocrinol Invest. 2020;43(2):219-229. doi: https://doi.org/10.1007/s40618-019-01105-7
23. Baker D, Herrod SS, Alvarez-Gonzalez C, et al. Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab. JAMA Neurol. 2017;74(8):961-969. doi: https://doi.org/10.1001/jamaneurol.2017.0676
24. Rydzewska M, Jaromin M, Pasierowska IE, et al. Role of the T and B lymphocytes in pathogenesis of autoimmune thyroid diseases. Thyroid Res. 2018;11(1):2. doi: https://doi.org/10.1186/s13044-018-0046-9
25. Antonelli A, Fallahi P, Elia G, et al. Graves’ disease: Clinical manifestations, immune pathogenesis (cytokines and chemokines) and therapy. Best Pract Res Clin Endocrinol Metab. 2020;34(1):101388. doi: https://doi.org/10.1016/j.beem.2020.101388
26. Gallo D, Piantanida E, Gallazzi M, et al. Immunological drivers in Graves’ Disease: NK cells as a Master Switcher. Front Endocrinol (Lausanne). 2020;11(1):2. doi: https://doi.org/10.3389/fendo.2020.00406
27. Scappaticcio L, Castellana M, Virili C, et al. Alemtuzumab-induced thyroid events in multiple sclerosis: a systematic review and meta-analysis. J Endocrinol Invest. 2020;43(2):219-229. doi: https://doi.org/10.1007/s40618-019-01105-7
28. Gallo D, Piantanida E, Gallazzi M, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359(17):1786-1801. doi: https://doi.org/10.1056/NEJMoa0802670
29. Cossburn M, Pace AA, Jones J, et al. Autoimmune disease after alemtuzumab treatment for multiple sclerosis in a multicenter cohort. Neurology. 2011;77(6):573-579. doi: https://doi.org/10.1212/WNL.0b013e318228bec5
30. Muller I, Moran C, Lecumberri B, et al. 2019 European Thyroid Association Guidelines on the Management of Thyroid Dysfunction following Immune Reconstitution Therapy. Eur Thyroid J. 2019;8(4):173-185. doi: https://doi.org/10.1159/000500881
31. Decallonne B, Bartholomé E, Delvaux V, et al. Thyroid disorders in alemtuzumab-treated multiple sclerosis patients: a Belgian consensus on diagnosis and management. Acta Neurol Belg. 2018;118(2):153-159. doi: https://doi.org/10.1007/s13760-018-0883-2
32. Devonshire V, Phillips R, Wass H, et al. Monitoring and management of autoimmunity in multiple sclerosis patients treated with alemtuzumab: practical recommendations. J Neurol. 2018;265(11):2494-2505. doi: https://doi.org/10.1007/s00415-018-8822-y
Supplementary files
|
1. Figure 1. Thyroid scintigraphy with 99mTc-pertechnetate after intravenous administration of radiopharmaceuticals (07/06/2022). Signs of diffuse enhancement of radiopharmaceutical capture. | |
Subject | ||
Type | Other | |
View
(177KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Mechanism of action of alemtuzumab | |
Subject | ||
Type | Other | |
View
(166KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Algorithm for managing a patient with MS receiving alemtuzumab | |
Subject | ||
Type | Other | |
View
(313KB)
|
Indexing metadata ▾ |
Review
For citations:
Sheremeta M.S., Korchagina M.O., Guseinova R.M., Schmidt T.E., Nizhegorodova K.S., Sviridenko N.Yu., Melnichenko G.A. Alemtuzumab-induced Graves’ disease. Problems of Endocrinology. 2023;69(3):51-57. (In Russ.) https://doi.org/10.14341/probl13238

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).