Preview

Problems of Endocrinology

Advanced search

Hormonal and genetic causes of cryptorchidism

https://doi.org/10.14341/probl13242

Abstract

Cryptorchidism is the most frequent congenital disorders of the reproductive system, is present in 2–3% of term newborn boys. Genes involved in embryonic testicular migration are known but their role in cryptorchidism development are not investigated enough. Genetical causes of cryptorchidism are identified in 5–7% of patients. The article contains data on the role of insulin-like peptide 3 and its receptor, anti-Müllerian hormone, gonadotropins, androgens in embryonic testicular migration. INSL3 and AMH are presented as markers of testicular dysfunction associated with cryptorchidism. Hypogonadotropic hypogonadism is also associated with cryptorchidism and can be diagnosed based on it. Results of modern investigations determine the necessary of hormonal and genetical examination of patients with isolated cryptorchidism to detect causes of cryptorchidism and manage of patients.

About the Authors

E. M. Oreshkina
Saratov State Medical University named by V.I. Rasumovskiy
Russian Federation

Elena M. Oreshkina

SPIN-код: 3180-0531

112 Bolshaya Kazachya street, Saratov


Competing Interests:

None



N. V. Bolotova
Saratov State Medical University named by V.I. Rasumovskiy
Russian Federation

Nina V. Bolotova, MD, PhD, Professor

SPIN-код: 5061-1600

Saratov


Competing Interests:

None



T. E. Pylaev
Saratov State Medical University named by V.I. Rasumovskiy
Russian Federation

Timofey E. Pylaev

SPIN-код: 181082

Saratov


Competing Interests:

None



A. P. Averyanov
Saratov State Medical University named by V.I. Rasumovskiy
Russian Federation

Andrey P. Averyanov, MD, PhD

SPIN-код: 1940-8093

Saratov


Competing Interests:

None



N. Y. Raygorodskaya
Saratov State Medical University named by V.I. Rasumovskiy
Russian Federation

Nadezda Y. Raygorodskaya, MD, PhD

SPIN-код: 4227-4358

Saratov


Competing Interests:

None



References

1. Hutson JM, Southwell BR, Li R, et al. The regulation of testicular descent and the effects of cryptorchidism. Endocrine Reviews. 2013;34(5):725–752. doi: https://doi.org/10.1210/er.2012-1089

2. Ivell R. The molecular basis of cryptorchidism. Mol Hum Reprod. 2003;9(4):175-181. doi: https://doi.org/10.1093/molehr/gag025

3. Feng S, Bogatcheva NV, Truong A, et al. Developmental expression and gene regulation of insulin-like 3 receptor rxfp2 in mouse male reproductive organs. Biol Reprod. 2007;77(4):671-680. doi: https://doi.org/10.1095/biolreprod.107.060442

4. Bay K, Virtanen HE, Hartung S, et al. Insulin-like factor 3 levels in cord blood and serum from children: Effects of age, postnatal hypothalamic-pituitary-gonadal axis activation, and cryptorchidism. J Clin Endocrinol Metab. 2007;92(10):4020-4027. doi: https://doi.org/10.1210/jc.2007-0974

5. Foresta C, Zuccarello D, Garolla A, Ferlin A. Role of hormones, genes, and environment in human cryptorchidism. Endocr Rev. 2008;29(5):560-580. doi: https://doi.org/10.1210/er.2007-0042

6. Bogatcheva NV, Truong A, Feng S, et al. GREAT/LGR8 Is the Only Receptor for Insulin-Like 3 Peptide. Mol Endocrinol. 2003;17(12):2639-2646. doi: https://doi.org/10.1210/me.2003-0096

7. Gorlov IP, Kamat A, Bogatcheva NV, et al. Mutations of the GREAT gene cause cryptorchidis. Hum Mol Genet. 2002;11(19):2309-2318. doi: https://doi.org/10.1093/hmg/11.19.2309

8. Harrison SM, Bush NC, Wang Y, et al. Insulin-Like Peptide 3 (INSL3) serum concentration during human male fetal life. Front Endocrinol (Lausanne). 2019;10(12):2639-2646. doi: https://doi.org/10.3389/fendo.2019.00596

9. Yuan FP, Li X, Lin J, et al. The role of RXFP2 in mediating androgen-induced inguinoscrotal testis descent in LH receptor knockout mice. Reproduction. 2010;139(4):759-769. doi: https://doi.org/10.1530/REP-09-0518

10. Fenichel P, Lahlou N, Coquillard P, et al. Cord blood Insulin-like peptide 3 (INSL3) but not testosterone is reduced in idiopathic cryptorchidism. Clin Endocrinol (Oxf). 2015;82(2):242-247. doi: https://doi.org/10.1111/cen.12500

11. Foresta C, Ferlin A. Role of INSL3 and LGR8 in cryptorchidism and testicular functions. Reprod Biomed Online. 2004;9(3):294-298. doi: https://doi.org/10.1016/S1472-6483(10)62144-X

12. Ferlin A, Bogatcheva NV, Gianesello L, et al. Insulinlike factor 3 gene mutations in testicular dysgenesis syndrome: clinical and functional characterization. Mol Hum Reprod. 2006;12(6):401-406. doi: https://doi.org/10.1093/molehr/gal043

13. Ferlin A, Simonato M, Bartoloni L, et al. The INSL3-LGR8/GREAT ligand-receptor pair in human cryptorchidism. J Clin Endocrinol Metab. 2003;88(9):4273-4279. doi: https://doi.org/10.1210/jc.2003-030359

14. Tenenbaum-Rakover Y, Admoni O, Elias-Assad G, et al. The evolving role of whole-exome sequencing in the management of disorders of sex development. Endocr Connect. 2021;10(6):620-629. doi: https://doi.org/10.1530/EC-21-0019

15. Ferlin A, Zuccarello D, Zuccarello B, et al. Genetic alterations associated with cryptorchidism. JAMA. 2008;300(19):2271-2276. doi: https://doi.org/10.1001/jama.2008.668

16. Ferlin A, Zuccarello D, Garolla A, et al. Mutations in INSL3 and RXFP2 genes in cryptorchid boys. Ann N Y Acad Sci. 2009;1160(1):213-214. doi: https://doi.org/10.1111/j.1749-6632.2008.03784.x

17. Nuti F, Marinari E, Erdei E, et al. The leucine-rich repeat-containing G protein-coupled receptor 8 gene T222P mutation does not cause cryptorchidism. J Clin Endocrinol Metab. 2008;93(3):1072-1076. doi: https://doi.org/10.1210/jc.2007-1993

18. Ayers K, Kumar R, Robevska G, et al. Familial bilateral cryptorchidism is caused by recessive variants in RXFP2. J Med Genet. 2019;56(11):727-733. doi: https://doi.org/10.1136/jmedgenet-2019-106203

19. Matuszczak E, Hermanowicz A, Komarowska M, Debek W. Serum AMH in physiology and pathology of male gonads. Int J Endocrinol. 2013;2013:1-6. doi: https://doi.org/10.1155/2013/128907

20. Appasamy M, Muttukrishna S, Pizzey A, et al. Relationship between male reproductive hormones, sperm DNA damage and markers of oxidative stress in infertility. Reprod Biomed Online. 2007;14(2):159-165. doi: https://doi.org/10.1016/S1472-6483(10)60783-3

21. Hutson JM, Lopez-Marambio FA. The possible role of AMH in shortening the gubernacular cord in testicular descent: A reappraisal of the evidence. J Pediatr Surg. 2017;52(10):1656-1660. doi: https://doi.org/10.1016/j.jpedsurg.2017.05.021

22. Bartlett JE, Lee SMY, Mishina Y, et al. Gubernacular development in Müllerian inhibiting substance receptor-deficient mice. BJU Int. 2002;89(1):113-118. doi: https://doi.org/10.1046/j.1464-4096.2001.00783.x

23. Tüttelmann F, Dykstra N, Themmen APN, et al. Anti-Müllerian hormone in men with normal and reduced sperm concentration and men with maldescended testes. Fertil. Steril. 2009;91(5):1812-1819. doi: https://doi.org/10.1016/j.fertnstert.2008.02.118

24. Boukari K, Meduri G, Brailly-Tabard S, et al. Lack of androgen receptor expression in Sertoli cells accounts for the absence of anti-Mullerian hormone repression during early human testis development. Clin Endocrinol Metab. 2009;94(5):1818-1825. doi: https://doi.org/10.1210/jc.2008-1909

25. Grinspon RP, Gottlieb S, Bedecarrás P, Rey RA. Anti-Müllerian hormone and testicular function in prepubertal boys with cryptorchidism. Front Endocrinol (Lausanne). 2018;(9):182. doi: https://doi.org/10.3389/fendo.2018.00182

26. Deeb A, Hughes IA. Inguinal hernia in female infants: a cue to check the sex chromosomes? BJU Int. 2005;96(3):401-403. doi: https://doi.org/10.1111/j.1464-410X.2005.05639.x

27. Sarfti J, Dode C, Young J. Kallmann syndrome caused by mutations in the PROK2 and PROKR2 genes: Pathophysiology and genotype-phenotype correlations. Front Horm Res. 2010;(39):121-132. doi: https://doi.org/10.1159/000312698

28. Barthold JS, Ivell R. A neuro-hormonal systems approach to understanding the complexity of cryptorchidism susceptibility. Front Endocrinol. 2018;9(401):1-7. doi: https://doi.org/10.3389/fendo.2018.00401

29. Kaftanovskaya EM, Huang Z, Barbara AM, et al. Cryptorchidism in mice with an androgen receptor ablation in gubernaculum testis. Mol Endocrinol. 2012;26(4):598-607. doi: https://doi.org/10.1210/me.2011-1283

30. Hughes IA, Davies JD, Bunch TI, et al. Androgen insensitivity syndrome. Lancet. 2012;380(9851):1419-1428. doi: https://doi.org/10.1016/S0140-6736(12)60071-3

31. Wang Q, Ge X, Wang H-X, Shi Q-M, et al. Association of androgen receptor gene CAG and GGN repeat polymorphism with cryptorchidism: A meta-analysis. Andrologia. 2018;50(3):e12909. doi: https://doi.org/10.1111/and.12909

32. Landero-Huerta DA, Vigueras-Villaseñor RM, Taja-Chayeb L, et al. Analysis of the CAG tract length in the androgen receptor gene in Mexican patients with nonsyndromic cryptorchidism. J Pediatr Endocrinol Metab. 2021;34(7):843-849. doi: https://doi.org/10.1515/jpem-2020-0378

33. Svechnikov K, Landreh L, Weisser J, et al. Origin, development and regulation of human leydig cells. Horm Res Paediatr. 2010;73(2):93-101. doi: https://doi.org/10.1159/000277141

34. Köhler B, Delezoide A-L, Boizet-Bonhoure B, et al. Coexpression of Wilms’ tumor suppressor 1 (WT1) and androgen receptor (AR) in the genital tract of human male embryos and regulation of AR promoter activity by WT1. J Mol Endocrinol. 2007;38(5):547-554. doi: https://doi.org/10.1677/JME-06-0020

35. Kaftanovskaya EM, Neukirchner G, Huff V, Agoulnik AI. Left-sided cryptorchidism in mice with Wilms tumour 1 gene deletion in gubernaculum testis. Pathology. 2013;230(1):1-8. doi: https://doi.org/10.1002/path.4161

36. Chavez-Saldana M, Vigueras-Villasenor RM, Yokoyama-Rebollar E, et al. Single nucleotide polymorphisms associated with nonsyndromic cryptorchidism in Mexican patients. Andrologia. 2018;50(1):10. doi: https://doi.org/10.1111/and.12788

37. Cheng Z, Wang M, Xu C, et al. Mutational analysis of HOXA10 gene in Chinese patients with cryptorchidism. Andrologia. 2017;49(1):e12592. doi: https://doi.org/10.1111/and.12592

38. Rodriguez F, Vallejos C, Giraudo F, et al. Copy number variants of Ras/MAPK pathway genes in patients with isolated cryptorchidism. Andrology. 2017;5(5):923-930. doi: https://doi.org/10.1111/andr.12390

39. Hadziselimovic NO, de Geyter C, Demougin P, et al. Decreased expression of FGFR1, SOS1, RAF1 genes in cryptorchidism. Urol Int. 2010;84(3):353-361. doi: https://doi.org/10.1159/000288242

40. Bouvattier C, Maione L, Bouligand J, et al. Neonatal gonadotropin therapy in male congenital hypogonadotropic hypogonadism. Nat Rev Endocrinol. 2012;8(3):172-182. doi: https://doi.org/10.1038/nrendo.2011.164

41. Vizeneux A, Hilfiger A, Bouligand J, et al. Congenital hypogonadotropic hypogonadism during childhood: presentation and genetic analyses in 46 boys. PLoS One. 2013;8(10):e77827. doi: https://doi.org/10.1371/journal.pone.0077827

42. Montenegro LR, Silveira LFG, Tusset C, et al. Combined use of multiplex ligation-dependent probe amplification and automatic sequencing for identification of KAL1 defects in patients with Kallmann syndrome. Fertil Steril. 2013;100(3):854-859. doi: https://doi.org/10.1016/j.fertnstert.2013.04.045

43. Salenave S, Chanson P, Bry H, et al. Kallmann’s syndrome: A comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J Clin Endocrinol Metab. 2008;93(3):758-763. doi: https://doi.org/10.1210/jc.2007-1168

44. Laitinen E-M, Tommiska J, Virtanen HE, et al. Isolated cryptorchidism: No evidence for involvement of genes underlying isolated hypogonadotropic hypogonadism. Mol Cell Endocrinol. 2011;341(1-2):35-38. doi: https://doi.org/10.1016/j.mce.2011.05.015

45. Renault CH, Aksglaede L, Wøjdemann D, et al. Minipuberty of human infancy – A window of opportunity to evaluate hypogonadism and differences of sex development? Ann Pediatr Endocrinol Metab. 2020;25(2):84-91. doi: https://doi.org/10.6065/apem.2040094.047

46. Bizzarri C, Cappa M. Ontogeny of hypothalamus-pituitary gonadal axis and minipuberty: An ongoing debate? Front Endocrinol (Lausanne). 2020;(11):187. doi: https://doi.org/10.3389/fendo.2020.00187

47. Suomi A-M, Main KM, Kaleva M, et al. Hormonal changes in 3-month-old cryptorchid boys. J Clin Endocrinol Metab. 2006;91(3):953-958. doi: https://doi.org/10.1210/jc.2004-2318

48. Pierik FH, Deddens JA, Burdorf A, et al. The hypothalamus-pituitary-testis axis in boys during the first six months of life: a comparison of cryptorchidism and hypospadias cases with controls. Int J Androl. 2009;32(5):453-461. doi: https://doi.org/10.1111/j.1365-2605.2008.00877.x

49. Barthold JS, Manson J, Regan V, et al. Reproductive hormone levels in infants with cryptorchidism during postnatal activation of the pituitary-testicular axis. J Urol. 2004;172(4P2):1736-1741. doi: https://doi.org/10.1097/01.ju.0000138523.24337.be

50. Raigorodskaya NYu, Bolotova NV, Morozov DA, Zakharova NB. The state of the testis in the boys presenting with cryptorchism during the mini-pubertal period. Problems of Endocrinology. 2014;60(2):4-7. (In Russ.). doi: https://doi.org/10.14341/probl20146024-7

51. Radmayr C, Bogaert G, Burgu B, et al. EAU Guidelines on Paediatric Urology. Paediatric Urology. 2022;15-18. https://d56bochluxqnz.cloudfront.net/documents/full-guideline/EAU-Guidelines-on-Paediatric-Urology-2022.pdf

52. Park KH, Lee JH, Han JJ, et al. Histological evidences suggest recommending orchiopexy within the first year of life for children with unilateral inguinal cryptorchid testis. Int J Urol. 2007;14(7):616-621. doi: https://doi.org/10.1111/j.1442-2042.2007.01788.x

53. Kollin C, Stukenborg JB, Nurmio M, et al. Boys with undescended testes: Endocrine, volumetric and morphometric studies on testicular function before and after orchidopexy at nine months or three years of age. J Clin Endocrinol Metab. 2012;97(12):4588-4595. doi: https://doi.org/10.1210/jc.2012-2325

54. Kolon TF, Herndon CDA, Baker LA, et al. Evaluation and treatment of cryptorchidism: AUA guideline. J Urol. 2014;192(2):337-345. doi: https://doi.org/10.1016/j.juro.2014.05.005

55. Henna M, Del Nero RM, Zugaiar S. Sampaio C, et al. Hormonal cryptorchidism therapy: systematic review with metanalysis of randomized clinical trials. Pediatr Surg Int. 2004;20(5):337-345. doi: https://doi.org/10.1007/s00383-004-1198-3

56. Ong C, Hasthorpe S, Hutson JM. Germ cell development in the descended and cryptorchid testis and the effects of hormonal manipulation. Pediatr Surg Int. 2005;21(4):240-254. doi: https://doi.org/10.1007/s00383-005-1382-0

57. Wei Y, Wang Y, Tang X, et al. Efficacy and safety of human chorionic gonadotropin for treatment of cryptorchidism: A meta‐analysis of randomised controlled trials. J Paediatr Child Health. 2018;54(8):900-906. doi: https://doi.org/10.1111/jpc.13920

58. Dunkel L, Taskinen S, Hovatta O, et al. Germ cell apoptosis after treatment of cryptorchidism with human chorionic gonadotropin is associated with impaired reproductive function in the adult. J Clin Invest. 1997;100(9):2341-2346. doi: https://doi.org/10.1172/JCI119773

59. Papadimitriou DT, Chrysis D, Nyktari G, et al. Replacement of male mini-puberty. J Endocr Soc. 2019;3(7):1275-1282. doi: https://doi.org/10.1210/js.2019-00083

60. Swee DS, Quinton R. Current concepts surrounding neonatal hormone therapy for boys with congenital hypogonadotropic hypogonadism. Expert Rev Endocrinol Metab. 2022;17(1):47-61. doi: https://doi.org/10.1080/17446651.2022.2023008


Review

For citations:


Oreshkina E.M., Bolotova N.V., Pylaev T.E., Averyanov A.P., Raygorodskaya N.Y. Hormonal and genetic causes of cryptorchidism. Problems of Endocrinology. 2023;69(5):99-106. (In Russ.) https://doi.org/10.14341/probl13242

Views: 3316


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)