Preview

Problems of Endocrinology

Advanced search

Molecular and cellular mechanisms of ageing: modern knowledge (literature review)

https://doi.org/10.14341/probl13278

Abstract

Ageing (as known as eldering, senescence) is a genetically and epigenetically programmed pathophysiological process. Velocity of biological ageing is defined as balance between alteration and reparation of body structures. According to last World Health Organization (WHO) highlights ageing still stays an extremely actual scientific, social and demographic problem: in 2020 total number of people older than 60 years and older was 1 billion people; in 2030 future number may be 1,4 billion people, in 2050 — 2,1 billion people. Absence of single universal theory of aging nowadays is reason for scientifical and clinical collaboration between biologists and doctors, including endocrinologists. Designing of potentially effective newest anti-ageing strategies (such as natural/synthetic telomerase regulators, mesenchymal stem cells etc.) is of interest to scientific community. The aim of present article is a review of modern omics (genomic, proteomic, metabolomic) ageing mechanisms, potential ways of targeted prevention and treatment of age-related disease according to conception of personalized medicine. Present review is narrative, it does not lead to systematic review, meta-analysis and does not aim to commercial advertisement. Review has been provided via PubMed article that have been published since 1979 until 2022.

About the Authors

R. K. Mikheev
Endocrinology Research Centre
Russian Federation

Robert K. Mikheev, MD, resident

SPIN-код: 9767-8468

11 Dm. Ulyanova street, 117036 Moscow


Competing Interests:

None



E. N. Andreeva
Endocrinology Research Centre; Moscow State University of Medicine and Dentistry of A.I. Evdokimov
Russian Federation

Elena N. Andreeva, MD, PhD, professor

SPIN-код: 1239-2937

Moscow


Competing Interests:

None



O. R. Grigoryan
Endocrinology Research Centre
Russian Federation

Olga R. Grigoryan, MD, PhD, professor

SPIN-код: 3060-8242

Moscow


Competing Interests:

None



E. V. Sheremetyeva
Endocrinology Research Centre
Russian Federation

Ekaterina V. Sheremetyeva, MD, PhD

SPIN-код: 9413-5136

Moscow


Competing Interests:

None



Yu. S. Absatarova
Endocrinology Research Centre
Russian Federation

Yulia S. Absatarova, MD, PhD

Moscow


Competing Interests:

None



A. S. Odarchenko
Endocrinology Research Centre
Russian Federation

Arina S. Odarchenko, MD

Moscow


Competing Interests:

None



O. N. Opletaeva
Kuban State Technological University
Russian Federation

Olesya N. Opletaeva, PhD, professor

SPIN-код: 3206-9425

Krasnodar


Competing Interests:

None



References

1. Lefever R. The rehabilitation of irreversible processes and dissipative structures' 50th anniversary. Philos Trans A Math Phys Eng Sci. 2018;376(2124):20170365. doi:10.1098/rsta.2017.0365

2. Tlidi M, Clerc MG, Panajotov K. Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology, the legacy of Ilya Prigogine (part 1). Philos Trans A Math Phys Eng Sci. 2018;376(2124):20180114. doi:10.1098/rsta.2018.0114

3. Tlidi M, Clerc MG, Panajotov K. Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology, the legacy of Ilya Prigogine (part 2). Philos Trans A Math Phys Eng Sci. 2018;376(2135):20180276. Published 2018 Nov 12. doi:10.1098/rsta.2018.0276

4. Bowen RL, Atwood CS. Living and dying for sex. A theory of aging based on the modulation of cell cycle signaling by reproductive hormones. Gerontology. 2004;50(5):265-290. doi:10.1159/000079125

5. https://www.who.int/health-topics/ageing#tab=tab_1 // World Health Organization – Owerview of Ageing

6. Haber C. Life extension and history: the continual search for the fountain of youth. J Gerontol A Biol Sci Med Sci. 2004;59(6):B515-B522. doi:10.1093/gerona/59.6.b515

7. Cornaro L. The Art of Living Long (1558). Reprint. New York: Arno Press; 1979

8. Salameh Y, Bejaoui Y, El Hajj N. DNA Methylation Biomarkers in Aging and Age-Related Diseases. Front Genet. 2020;11:171. Published 2020 Mar 10. doi:10.3389/fgene.2020.00171

9. da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev. 2016;29:90-112. doi:10.1016/j.arr.2016.06.005

10. Johnson TE. Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science. 1990;249(4971):908-912. doi:10.1126/science.2392681

11. Tissenbaum HA, Ruvkun G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics. 1998;148(2):703-717. doi:10.1093/genetics/148.2.703

12. Bin-Jumah MN, Nadeem MS, Gilani SJ, et al. Genes and Longevity of Lifespan. Int J Mol Sci. 2022;23(3):1499. Published 2022 Jan 28. doi:10.3390/ijms23031499

13. Peixoto P, Cartron PF, Serandour AA, Hervouet E. From 1957 to Nowadays: A Brief History of Epigenetics. Int J Mol Sci. 2020;21(20):7571. Published 2020 Oct 14. doi:10.3390/ijms21207571

14. Bhakat KK, Sengupta S, Mitra S. Fine-tuning of DNA base excision/strand break repair via acetylation. DNA Repair (Amst). 2020;93:102931. doi:10.1016/j.dnarep.2020.102931

15. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371-384. doi:10.1038/s41576-018-0004-3

16. Princz A., Tavernarakis N. SUMOylation in Neurodegenerative Diseases // Gerontology. 2020. Vol. 66, № 2. P. 122–130.

17. Koyuncu S, Loureiro R, Lee HJ, Wagle P, Krueger M, Vilchez D. Rewiring of the ubiquitinated proteome determines ageing in C. elegans. Nature. 2021;596(7871):285-290. doi:10.1038/s41586-021-03781-z

18. Groslambert J, Prokhorova E, Ahel I. ADP-ribosylation of DNA and RNA. DNA Repair (Amst). 2021;105:103144. doi:10.1016/j.dnarep.2021.10314419.

19. Liu G, Chen H, Liu H, Zhang W, Zhou J. Emerging roles of SIRT6 in human diseases and its modulators. Med Res Rev. 2021;41(2):1089-1137. doi:10.1002/med.21753

20. Horvath S. DNA methylation age of human tissues and cell types [published correction appears in Genome Biol. 2015;16:96]. Genome Biol. 2013;14(10):R115. doi:10.1186/gb-2013-14-10-r115

21. https://dnamage.genetics.ucla.edu/home // DNA Methylation Age Calculator

22. Bell CG, Lowe R, Adams PD, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 2019;20(1):249. Published 2019 Nov 25. doi:10.1186/s13059-019-1824-y

23. Chan M, Yuan H, Soifer I, et al. Novel insights from a multiomics dissection of the Hayflick limit. Elife. 2022;11:e70283. Published 2022 Feb 4. doi:10.7554/eLife.70283

24. Perona R. The Nobel Prize in physiology or medicine 2009 "for telomere biology" and its relevance to cancer and related diseases. Clin Transl Oncol. 2010;12(10):647-649. doi:10.1007/s12094-010-0572-y

25. Aguado J, d'Adda di Fagagna F, Wolvetang E. Telomere transcription in ageing. Ageing Res Rev. 2020;62:101115. doi:10.1016/j.arr.2020.101115.

26. Lalonde M, Chartrand P. TERRA, a Multifaceted Regulator of Telomerase Activity at Telomeres. J Mol Biol. 2020;432(15):4232-4243. doi:10.1016/j.jmb.2020.02.004

27. Fragkiadaki P, Renieri E, Kalliantasi K, et al. Τelomerase inhibitors and activators in aging and cancer: A systematic review. Mol Med Rep. 2022;25(5):158. doi:10.3892/mmr.2022.12674

28. Wu L, Fidan K, Um JY, Ahn KS. Telomerase: Key regulator of inflammation and cancer. Pharmacol Res. 2020;155:104726. doi:10.1016/j.phrs.2020.104726

29. Wang Y, Sušac L, Feigon J. Structural Biology of Telomerase. Cold Spring Harb Perspect Biol. 2019;11(12):a032383. Published 2019 Dec 2. doi:10.1101/cshperspect.a032383

30. Bousso P, Wahn V, Douagi I, et al. Diversity, functionality, and stability of the T cell repertoire derived in vivo from a single human T cell precursor. Proc Natl Acad Sci U S A. 2000;97(1):274-278. doi:10.1073/pnas.97.1.274

31. Pereira B, Xu XN, Akbar AN. Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly. Front Immunol. 2020;11:583019. Published 2020 Oct 14. doi:10.3389/fimmu.2020.583019

32. Das MM, Godoy M, Chen S, et al. Young bone marrow transplantation preserves learning and memory in old mice. Commun Biol. 2019;2:73. Published 2019 Feb 20. doi:10.1038/s42003-019-0298-5.

33. Uziel O, Lahav M, Shargian L, et al. Premature ageing following allogeneic hematopoietic stem cell transplantation [published correction appears in Bone Marrow Transplant. 2020 Apr 8;:]. Bone Marrow Transplant. 2020;55(7):1438-1446. doi:10.1038/s41409-020-0839-z.

34. Epelbaum J. Neuroendocrinology and aging. J Neuroendocrinol. 2008;20(6):808-811. doi:10.1111/j.1365-2826.2008.01720.x

35. Iwen KA, Brabant G. Therapie mit Schilddrüsenhormonen im Alter Thyroid hormone therapy in old age. Internist (Berl). 2020;61(6):541-548. doi:10.1007/s00108-020-00790-4

36. Corona G, Krausz C. Late-onset hypogonadism a challenging task for the andrology field. Andrology. 2020;8(6):1504-1505. doi:10.1111/andr.12917

37. Tan DX, Xu B, Zhou X, Reiter RJ. Pineal Calcification, Melatonin Production, Aging, Associated Health Consequences and Rejuvenation of the Pineal Gland. Molecules. 2018

38. Gambacciani M, Levancini M. Hormone replacement therapy and the prevention of postmenopausal osteoporosis. Prz Menopauzalny. 2014;13(4):213-220. doi:10.5114/pm.2014.44996

39. Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ. The central role of DNA damage in the ageing process. Nature. 2021;592(7856):695-703. doi:10.1038/s41586-021-03307-7

40. Carusillo A, Mussolino C. DNA Damage: From Threat to Treatment. Cells. 2020;9(7):1665. Published 2020 Jul 10. doi:10.3390/cells9071665

41. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235-263. doi:10.1002/em.22087

42. Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both?. Antioxid Redox Signal. 2020;33(12):839-859. doi:10.1089/ars.2020.8074

43. Chen X, Fu W, Luo Y, Cui C, Suppavorasatit I, Liang L. Protein deamidation to produce processable ingredients and engineered colloids for emerging food applications. Compr Rev Food Sci Food Saf. 2021;20(4):3788-3817. doi:10.1111/1541-4337.12759

44. Galzio R, Rosati F, Benedetti E, et al. Glycosilated nucleolin as marker for human gliomas. J Cell Biochem. 2012;113(2):571-579. doi:10.1002/jcb.23381.

45. Fielden J, Ruggiano A, Popović M, Ramadan K. DNA protein crosslink proteolysis repair: From yeast to premature ageing and cancer in humans. DNA Repair (Amst). 2018;71:198-204. doi:10.1016/j.dnarep.2018.08.025

46. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-1217. doi:10.1016/j.cell.2013.05.039

47. Geng Y, Yang J, Li S, Chen M. Chyloid Fat Carried Adipose-Derived Mesenchymal Stem Cells Accelerate Wound Healing Via Promoting Angiogenesis. Ann Plast Surg. 2021;87(4):472-477. doi:10.1097/SAP.0000000000002778

48. Shyh-Chang N, Ng HH. The metabolic programming of stem cells. Genes Dev. 2017;31(4):336-346. doi:10.1101/gad.293167.116

49. Simonson OE, Mougiakakos D, Heldring N, et al. In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome [published correction appears in Stem Cells Transl Med. 2016 Jun;5(6):845]. Stem Cells Transl Med. 2015;4(10):1199-1213. doi:10.5966/sctm.2015-0021

50. Simonson OE, Ståhle E, Hansen T, et al. Five-Year Follow-up after Mesenchymal Stromal Cell-based Treatment of Severe Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2020;202(7):1051-1055. doi:10.1164/rccm.202003-0544LE

51. Shabbir U, Arshad MS, Sameen A, Oh DH. Crosstalk between Gut and Brain in Alzheimer's Disease: The Role of Gut Microbiota Modulation Strategies. Nutrients. 2021;13(2):690. Published 2021 Feb 21. doi:10.3390/nu13020690

52. Liu, S.; Gao, J.; Zhu, M.; Liu, K.; Zhang, H.-L. Gut microbiota and dysbiosis in Alzheimer’s disease: Implications for pathogenesis

53. and treatment. Mol. Neurobiol. 2020, 57, 5026–5043

54. Sun J, Xu J, Ling Y, et al. Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry. 2019;9(1):189. Published 2019 Aug 5. doi:10.1038/s41398-019-0525-3

55. Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, Aging, and the Failing Kidney. Front Endocrinol (Lausanne). 2020;11:560. Published 2020 Aug 27. doi:10.3389/fendo.2020.00560


Supplementary files

1. Figure 1. Classification of modern theories of aging
Subject
Type Исследовательские инструменты
View (140KB)    
Indexing metadata ▾

Review

For citations:


Mikheev R.K., Andreeva E.N., Grigoryan O.R., Sheremetyeva E.V., Absatarova Yu.S., Odarchenko A.S., Opletaeva O.N. Molecular and cellular mechanisms of ageing: modern knowledge (literature review). Problems of Endocrinology. 2023;69(5):45-54. (In Russ.) https://doi.org/10.14341/probl13278

Views: 6321


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)