Molecular and cellular mechanisms of ageing: modern knowledge (literature review)
https://doi.org/10.14341/probl13278
Abstract
Ageing (as known as eldering, senescence) is a genetically and epigenetically programmed pathophysiological process. Velocity of biological ageing is defined as balance between alteration and reparation of body structures. According to last World Health Organization (WHO) highlights ageing still stays an extremely actual scientific, social and demographic problem: in 2020 total number of people older than 60 years and older was 1 billion people; in 2030 future number may be 1,4 billion people, in 2050 — 2,1 billion people. Absence of single universal theory of aging nowadays is reason for scientifical and clinical collaboration between biologists and doctors, including endocrinologists. Designing of potentially effective newest anti-ageing strategies (such as natural/synthetic telomerase regulators, mesenchymal stem cells etc.) is of interest to scientific community. The aim of present article is a review of modern omics (genomic, proteomic, metabolomic) ageing mechanisms, potential ways of targeted prevention and treatment of age-related disease according to conception of personalized medicine. Present review is narrative, it does not lead to systematic review, meta-analysis and does not aim to commercial advertisement. Review has been provided via PubMed article that have been published since 1979 until 2022.
About the Authors
R. K. MikheevRussian Federation
Robert K. Mikheev, MD, resident
SPIN-код: 9767-8468
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
None
E. N. Andreeva
Russian Federation
Elena N. Andreeva, MD, PhD, professor
SPIN-код: 1239-2937
Moscow
Competing Interests:
None
O. R. Grigoryan
Russian Federation
Olga R. Grigoryan, MD, PhD, professor
SPIN-код: 3060-8242
Moscow
Competing Interests:
None
E. V. Sheremetyeva
Russian Federation
Ekaterina V. Sheremetyeva, MD, PhD
SPIN-код: 9413-5136
Moscow
Competing Interests:
None
Yu. S. Absatarova
Russian Federation
Yulia S. Absatarova, MD, PhD
Moscow
Competing Interests:
None
A. S. Odarchenko
Russian Federation
Arina S. Odarchenko, MD
Moscow
Competing Interests:
None
O. N. Opletaeva
Russian Federation
Olesya N. Opletaeva, PhD, professor
SPIN-код: 3206-9425
Krasnodar
Competing Interests:
None
References
1. Lefever R. The rehabilitation of irreversible processes and dissipative structures' 50th anniversary. Philos Trans A Math Phys Eng Sci. 2018;376(2124):20170365. doi:10.1098/rsta.2017.0365
2. Tlidi M, Clerc MG, Panajotov K. Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology, the legacy of Ilya Prigogine (part 1). Philos Trans A Math Phys Eng Sci. 2018;376(2124):20180114. doi:10.1098/rsta.2018.0114
3. Tlidi M, Clerc MG, Panajotov K. Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology, the legacy of Ilya Prigogine (part 2). Philos Trans A Math Phys Eng Sci. 2018;376(2135):20180276. Published 2018 Nov 12. doi:10.1098/rsta.2018.0276
4. Bowen RL, Atwood CS. Living and dying for sex. A theory of aging based on the modulation of cell cycle signaling by reproductive hormones. Gerontology. 2004;50(5):265-290. doi:10.1159/000079125
5. https://www.who.int/health-topics/ageing#tab=tab_1 // World Health Organization – Owerview of Ageing
6. Haber C. Life extension and history: the continual search for the fountain of youth. J Gerontol A Biol Sci Med Sci. 2004;59(6):B515-B522. doi:10.1093/gerona/59.6.b515
7. Cornaro L. The Art of Living Long (1558). Reprint. New York: Arno Press; 1979
8. Salameh Y, Bejaoui Y, El Hajj N. DNA Methylation Biomarkers in Aging and Age-Related Diseases. Front Genet. 2020;11:171. Published 2020 Mar 10. doi:10.3389/fgene.2020.00171
9. da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev. 2016;29:90-112. doi:10.1016/j.arr.2016.06.005
10. Johnson TE. Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science. 1990;249(4971):908-912. doi:10.1126/science.2392681
11. Tissenbaum HA, Ruvkun G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics. 1998;148(2):703-717. doi:10.1093/genetics/148.2.703
12. Bin-Jumah MN, Nadeem MS, Gilani SJ, et al. Genes and Longevity of Lifespan. Int J Mol Sci. 2022;23(3):1499. Published 2022 Jan 28. doi:10.3390/ijms23031499
13. Peixoto P, Cartron PF, Serandour AA, Hervouet E. From 1957 to Nowadays: A Brief History of Epigenetics. Int J Mol Sci. 2020;21(20):7571. Published 2020 Oct 14. doi:10.3390/ijms21207571
14. Bhakat KK, Sengupta S, Mitra S. Fine-tuning of DNA base excision/strand break repair via acetylation. DNA Repair (Amst). 2020;93:102931. doi:10.1016/j.dnarep.2020.102931
15. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371-384. doi:10.1038/s41576-018-0004-3
16. Princz A., Tavernarakis N. SUMOylation in Neurodegenerative Diseases // Gerontology. 2020. Vol. 66, № 2. P. 122–130.
17. Koyuncu S, Loureiro R, Lee HJ, Wagle P, Krueger M, Vilchez D. Rewiring of the ubiquitinated proteome determines ageing in C. elegans. Nature. 2021;596(7871):285-290. doi:10.1038/s41586-021-03781-z
18. Groslambert J, Prokhorova E, Ahel I. ADP-ribosylation of DNA and RNA. DNA Repair (Amst). 2021;105:103144. doi:10.1016/j.dnarep.2021.10314419.
19. Liu G, Chen H, Liu H, Zhang W, Zhou J. Emerging roles of SIRT6 in human diseases and its modulators. Med Res Rev. 2021;41(2):1089-1137. doi:10.1002/med.21753
20. Horvath S. DNA methylation age of human tissues and cell types [published correction appears in Genome Biol. 2015;16:96]. Genome Biol. 2013;14(10):R115. doi:10.1186/gb-2013-14-10-r115
21. https://dnamage.genetics.ucla.edu/home // DNA Methylation Age Calculator
22. Bell CG, Lowe R, Adams PD, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 2019;20(1):249. Published 2019 Nov 25. doi:10.1186/s13059-019-1824-y
23. Chan M, Yuan H, Soifer I, et al. Novel insights from a multiomics dissection of the Hayflick limit. Elife. 2022;11:e70283. Published 2022 Feb 4. doi:10.7554/eLife.70283
24. Perona R. The Nobel Prize in physiology or medicine 2009 "for telomere biology" and its relevance to cancer and related diseases. Clin Transl Oncol. 2010;12(10):647-649. doi:10.1007/s12094-010-0572-y
25. Aguado J, d'Adda di Fagagna F, Wolvetang E. Telomere transcription in ageing. Ageing Res Rev. 2020;62:101115. doi:10.1016/j.arr.2020.101115.
26. Lalonde M, Chartrand P. TERRA, a Multifaceted Regulator of Telomerase Activity at Telomeres. J Mol Biol. 2020;432(15):4232-4243. doi:10.1016/j.jmb.2020.02.004
27. Fragkiadaki P, Renieri E, Kalliantasi K, et al. Τelomerase inhibitors and activators in aging and cancer: A systematic review. Mol Med Rep. 2022;25(5):158. doi:10.3892/mmr.2022.12674
28. Wu L, Fidan K, Um JY, Ahn KS. Telomerase: Key regulator of inflammation and cancer. Pharmacol Res. 2020;155:104726. doi:10.1016/j.phrs.2020.104726
29. Wang Y, Sušac L, Feigon J. Structural Biology of Telomerase. Cold Spring Harb Perspect Biol. 2019;11(12):a032383. Published 2019 Dec 2. doi:10.1101/cshperspect.a032383
30. Bousso P, Wahn V, Douagi I, et al. Diversity, functionality, and stability of the T cell repertoire derived in vivo from a single human T cell precursor. Proc Natl Acad Sci U S A. 2000;97(1):274-278. doi:10.1073/pnas.97.1.274
31. Pereira B, Xu XN, Akbar AN. Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly. Front Immunol. 2020;11:583019. Published 2020 Oct 14. doi:10.3389/fimmu.2020.583019
32. Das MM, Godoy M, Chen S, et al. Young bone marrow transplantation preserves learning and memory in old mice. Commun Biol. 2019;2:73. Published 2019 Feb 20. doi:10.1038/s42003-019-0298-5.
33. Uziel O, Lahav M, Shargian L, et al. Premature ageing following allogeneic hematopoietic stem cell transplantation [published correction appears in Bone Marrow Transplant. 2020 Apr 8;:]. Bone Marrow Transplant. 2020;55(7):1438-1446. doi:10.1038/s41409-020-0839-z.
34. Epelbaum J. Neuroendocrinology and aging. J Neuroendocrinol. 2008;20(6):808-811. doi:10.1111/j.1365-2826.2008.01720.x
35. Iwen KA, Brabant G. Therapie mit Schilddrüsenhormonen im Alter Thyroid hormone therapy in old age. Internist (Berl). 2020;61(6):541-548. doi:10.1007/s00108-020-00790-4
36. Corona G, Krausz C. Late-onset hypogonadism a challenging task for the andrology field. Andrology. 2020;8(6):1504-1505. doi:10.1111/andr.12917
37. Tan DX, Xu B, Zhou X, Reiter RJ. Pineal Calcification, Melatonin Production, Aging, Associated Health Consequences and Rejuvenation of the Pineal Gland. Molecules. 2018
38. Gambacciani M, Levancini M. Hormone replacement therapy and the prevention of postmenopausal osteoporosis. Prz Menopauzalny. 2014;13(4):213-220. doi:10.5114/pm.2014.44996
39. Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ. The central role of DNA damage in the ageing process. Nature. 2021;592(7856):695-703. doi:10.1038/s41586-021-03307-7
40. Carusillo A, Mussolino C. DNA Damage: From Threat to Treatment. Cells. 2020;9(7):1665. Published 2020 Jul 10. doi:10.3390/cells9071665
41. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235-263. doi:10.1002/em.22087
42. Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both?. Antioxid Redox Signal. 2020;33(12):839-859. doi:10.1089/ars.2020.8074
43. Chen X, Fu W, Luo Y, Cui C, Suppavorasatit I, Liang L. Protein deamidation to produce processable ingredients and engineered colloids for emerging food applications. Compr Rev Food Sci Food Saf. 2021;20(4):3788-3817. doi:10.1111/1541-4337.12759
44. Galzio R, Rosati F, Benedetti E, et al. Glycosilated nucleolin as marker for human gliomas. J Cell Biochem. 2012;113(2):571-579. doi:10.1002/jcb.23381.
45. Fielden J, Ruggiano A, Popović M, Ramadan K. DNA protein crosslink proteolysis repair: From yeast to premature ageing and cancer in humans. DNA Repair (Amst). 2018;71:198-204. doi:10.1016/j.dnarep.2018.08.025
46. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-1217. doi:10.1016/j.cell.2013.05.039
47. Geng Y, Yang J, Li S, Chen M. Chyloid Fat Carried Adipose-Derived Mesenchymal Stem Cells Accelerate Wound Healing Via Promoting Angiogenesis. Ann Plast Surg. 2021;87(4):472-477. doi:10.1097/SAP.0000000000002778
48. Shyh-Chang N, Ng HH. The metabolic programming of stem cells. Genes Dev. 2017;31(4):336-346. doi:10.1101/gad.293167.116
49. Simonson OE, Mougiakakos D, Heldring N, et al. In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome [published correction appears in Stem Cells Transl Med. 2016 Jun;5(6):845]. Stem Cells Transl Med. 2015;4(10):1199-1213. doi:10.5966/sctm.2015-0021
50. Simonson OE, Ståhle E, Hansen T, et al. Five-Year Follow-up after Mesenchymal Stromal Cell-based Treatment of Severe Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2020;202(7):1051-1055. doi:10.1164/rccm.202003-0544LE
51. Shabbir U, Arshad MS, Sameen A, Oh DH. Crosstalk between Gut and Brain in Alzheimer's Disease: The Role of Gut Microbiota Modulation Strategies. Nutrients. 2021;13(2):690. Published 2021 Feb 21. doi:10.3390/nu13020690
52. Liu, S.; Gao, J.; Zhu, M.; Liu, K.; Zhang, H.-L. Gut microbiota and dysbiosis in Alzheimer’s disease: Implications for pathogenesis
53. and treatment. Mol. Neurobiol. 2020, 57, 5026–5043
54. Sun J, Xu J, Ling Y, et al. Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry. 2019;9(1):189. Published 2019 Aug 5. doi:10.1038/s41398-019-0525-3
55. Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, Aging, and the Failing Kidney. Front Endocrinol (Lausanne). 2020;11:560. Published 2020 Aug 27. doi:10.3389/fendo.2020.00560
Supplementary files
|
1. Figure 1. Classification of modern theories of aging | |
Subject | ||
Type | Исследовательские инструменты | |
View
(140KB)
|
Indexing metadata ▾ |
Review
For citations:
Mikheev R.K., Andreeva E.N., Grigoryan O.R., Sheremetyeva E.V., Absatarova Yu.S., Odarchenko A.S., Opletaeva O.N. Molecular and cellular mechanisms of ageing: modern knowledge (literature review). Problems of Endocrinology. 2023;69(5):45-54. (In Russ.) https://doi.org/10.14341/probl13278

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).