Study of the photoperiodic dynamics of the peripheral dopamine content in comparison with the thyroid profile in various groups of men from the European North
https://doi.org/10.14341/probl13286
Abstract
BACKGROUND: Knowledge of the physiological mechanisms of adaptation arising in response to changes in photoperiods is especially important for residents of the European North. In the literature, there is practically no information about photoperiodic dynamics of serum dopamine level, despite its significant role in the regulation of the body’s activity. The mutual modulating effect of the dopaminergic and thyroid systems is known.
AIM: To show the ratio of dopamine levels and the content of hormones, protines and autoantibodies of the thyroid system, taking into account photoperiod of the year, in practically healthy populations of the European North.
MATERIALS AND METHODS: Healthy male population (20 men) of Arkhangelsk was examined in various photoperiods of the year (80 samples): an increase in the length of daylight hours (March), its maximum duration (June), a decrease (September), and a minimum duration (December). The inhabitants of the settlements and the nomadic aboriginal population (100 men) were examined during 2 photoperiods of the year — March and December. The serum levels of iodothyronines, TSH, TG, antibodies to TPO, antibodies to TG and plasma level of dopamine were determined using ELISA methods.
RESULTS: Residents of Arkhangelsk in June compared to December have higher levels of dopamine (0.502 and 0.365 nmol/l, p=0.01), T3 (1.09 and 0.94 nmol/l, p=0.003), T4 (113.45 and 99.03 nmol/l, p=0.0002). In September, compared with June, a decrease in dopamine (0.235 nmol/l, p=0.0003), T3 (0.92 nmol/l, p=0.004) was recorded with an increase in T4/T3 ratio from 106.54 to 117.89 units (p=0.006). The nomadic aboriginal population in March compared with December showed a tendency to a higher content of dopamine (0.00 and 0.394 nmol/l, p=0.07) with the decrease in fT4 (15.20 and 13.90, p=0.015), fT4/fT3 ratio from 3.13 to 2.28 units (p=0.006). In December, 67% of nomadic population had undetectable dopamine values (0 nmol/l) and 22% — excess dopamine values, in March 27% — excess values.
CONCLUSION: Unidirectional changes in dopamine and thyroid activity in men of the European North were shown with their decrease during periods of decrease and minimum daylight hours and an increase during periods of increase and maximum daylight hours.
About the Authors
E. V. TipisovaRussian Federation
Elena V. Tipisova, doctor of biology (PhD)
20 Nikolsky Av., 163020 Arkhangelsk
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
V. N. Zyabisheva
Russian Federation
Valentina N. Zyabisheva
Arkhangelsk
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
V. A. Alikina
Russian Federation
Viktoria A. Alikina, Cand. Sc. (Biology)
Arkhangelsk
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
A. E. Elfimova
Russian Federation
Aleksandra E. Elfimova, Cand. Sc. (Biology)
Arkhangelsk
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
I. N. Molodovskaya
Russian Federation
Irina N. Molodovskaya, Cand. Sc. (Biology)
Arkhangelsk
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
References
1. Barabash LV. Biorhythmological aspects of hormonal regulation. Russian Journal of Physiology. 2017;103(4):361-370. (In Russ.)
2. Tsfasman AZ, Alpaev DV. Circadian rhythm blood pressure under altered diarnal life-rhithm. Moscow; 2011. (In Russ.)
3. Snezhitskiy VA, Pobivantseva NF. Circadian rhythms in cardiological practice. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta. 2013;1(41):9-13. (In Russ.)
4. Ziegelasch N, Vogel M, Siekmeyer W, et al. Seasonal variation of blood pressure in children. Pediatr Nephrol. 2021;36(8):2257-2263. doi: https://doi.org/10.1007/s00467-020-04823-w
5. Balashova SN, Samodova AV, Dobrodeeva LK, Belisheva NK. Hematological reactions in the inhabitants of the Arctic on a polar night and a polar day. Immun Inflamm Dis. 2020;8:415-422. doi: https://doi.org/10.1002/iid3.323
6. Kuz’menko NV, Tsyrlin VA, Pliss MG. Seasonal dynamics of melatonin, prolactin, sex hormones and adrenal hormones in healthy people: a meta-analysis. J Evol Biochem Physiol. 2021;57(3)202-223. (In Russ.) doi: https://doi.org/10.31857/S0044452921030062
7. Poskotinova LV. Vegetative regulation of heart rhythm and endocrine status of young people in the European North of Russia. Ekaterinburg; 2010. (In Russ.)
8. Kochan TI, Shadrina VD, Potolitsina NN, et al. Comprehensive assessment of the influence of the conditions of the North on metabolism, physiological and psycho-emotional state of a person. Human Physiology. 2008;34(3):106-113. (In Russ.)
9. Bolotnova TV, Tyapkin AV, Solovyova EN, et al. Assesment of climatic, geographical and pharmacological features in the treatment of arterial hypertension among residents of the Far North. Pharmacoeconomics: theory and practice. 2019;7(1):22. (In Russ.) doi: https://doi.org/10.30809/phe.1.2019.2
10. Kaptsov VA, Deynego VN. The law of the synergy and hygiene lighting (literature review). Hygiene and Sanitation. 2020;99(8):780-784. (In Russ.) doi: https://doi.org/10.47470/0016-9900-2020-99-8-780-784
11. Kubasov RV. Circannual biorhythms of thyroid and gonadal system. Human Ecology. 2008;2:26-29. (In Russ.)
12. Alenikova AE, Tipisova EV. Analysis of the changes in male hormone profile depending on weather conditions in Arkhangelsk. Vestnik of Northern (Arctic) Federal University. 2014;3:5-15. (In Russ.)
13. Santos NC, Costa P, Ruano D, et al. Revisiting thyroid hormones in schizophrenia. J Thyroid Res. 2012;2012:569147. doi: https://doi.org/10.1155/2012/569147
14. Molodovskaya IN. Dopaminergic system and its relationship with the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid systems (review). Sibirskij Nauchnyj Medicinskij Zhurnal. 2020;40(6):34-43. (In Russ.) doi: https://doi.org/10.15372/SSMJ20200604
15. Molodovskaya IN, Tipisova EV, Popkova VA, et al. Photoperiodic variation of thyroid hormones and autoantibodies in males of the European North. Yakut Medical Journal. 2020;2(70):77-80. (In Russ.) doi: https://doi.org/10.25789/YMJ.2020.70.23
16. Haritou SJ, Zylstra R, Ralli C, et al. Seasonal changes in circadian peripheral plasma concentrations of melatonin, serotonin, dopamine and cortisol in aged horses with Cushing’s disease under natural photoperiod. J Neuroendocrinol. 2008;20(8):988-996. doi: https://doi.org/10.1111/j.1365-2826.2008.01751.x
17. Sinyakova NA, Bazhenova EYu, Kulikova EA, et al. С1473G variant in tryptophan hydroxylase 2 gene and the sensitivity of the dopamine system to short photoperiod in mice. Molekulyarnaya Biologiya. 2020;54(1):60-68. (In Russ.) doi: https://doi.org/10.31857/S0026898420010140
18. Wirz-Justice A. Seasonality in affective disorders. Gen Comp Endocrinol. 2018;258:244-249. doi: https://doi.org/10.1016/j.ygcen.2017.07.010
19. Kovalenko IL, Smagin DA, Galyamina AG, et al. Changes of dopaminergic genes expression in brain regions of male mice under chronic social defeat stress: RNAseq data. Molekulyarnaya Biologiya. 2016;50:184-187. (In Russ.) doi: https://doi.org/10.7868/S0026898416010080
20. Brewerton TD, Putnam KT, Lewine RRJ, Risch SC. Seasonality of cerebrospinal fluid monoamine metabolite concentrations and their associations with meteorological variables in humans. J Psychiatr Res. 2018;99:76-82. doi: https://doi.org/10.1016/j.jpsychires.2018.01.004
21. Brewerton TD, Berrettini WH, Nurnberger JIJr, Linnoila M. Analysis of seasonal fluctuations of CSF monoamine metabolites and neuropeptides in normal controls: findings with 5HIAA and HVA. Psychiatry Res. 1988;23(3):257-65. doi: https://doi.org/10.1016/0165-1781(88)90016-9 22. Rubí B, Maechler P. Minireview: New roles for peripheral dopamine on metabolic control and tumor growth: let’s seek the balance. Endocrinol. 2010;151(12):5570-5581. doi: https://doi.org/10.1210/en.2010-0745
22. Bocharova OA, Matveev VB, Bocharov EV. Adhesion concept in cancer biology: local and central mechanisms (part 2). Russian Journal of Biotherapy. 2021;20(4):42-50. (In Russ.) doi: https://doi.org/10.17650/1726-9784-2021-20-4-42-50
23. Melander A. Aminergic regulation of thyroid activity: Importance of the sympathetic innervation and of the mass cells of the thyroid gland. Acta Med Scand. 1977;201:257-262 25. Benvenga S, Guarneri F. Thyroid hormone binding motifs and iodination pattern of thyroglobulin. Front Biosci (Landmark Ed). 2019;24(2):212-230. doi: https://doi.org/10.2741/4714
24. Ma ZF, Skeaff SA. Thyroglobulin as a biomarker of iodine deficiency: a review. Thyroid. 2014;24(8):1195-1209. doi: https://doi.org/10.1089/thy.2014.0052
25. Zimmermann MB, Aeberli I, Andersson M, et al. Thyroglobulin is a sensitive measure of both deficient and excess iodine intakes in children and indicates no adverse effects on thyroid function in the UIC range of 100-299 μg/L: a UNICEF/ICCIDD study group report. J Clin Endocrinol Metab. 2013;98(3):1271-1280. doi: https://doi.org/10.1210/jc.2012-3952
26. Potutkin DS, Tipisova EV, Devyatova EN, et al. Autoantibodies to thyroid antigens levels in the population of the Russian Arctic at different levels of blood dopamine. Russian Clinical Laboratory Diagnostics. 2020;65(3):179-184. (In Russ.) doi: https://doi.org/10.18821/0869-2084-2020-65-3-179-184
27. Tipisova E.V., Alikina V.A., Molodovskaya I.N., et al. Relationship among the levels of dopamine, thyroid and antispermal antibodies in populations of the European and Asian North. Aviakosmicheskaya i Ekologicheskaya Meditsina. 2022;6:43-50. (In Russ.) doi: https://doi.org/10.21687/0233-528X-2022-56-6-43-50
28. Repina VP. Influence of different concentrations of catecholamines on the functioning of immunocompetent cells Ekologiya cheloveka – Human Ecology. 2008;2:30-33. (In Russ.)
29. Levy SB, Leonard WR, Tarskaia LA, et al. Seasonal and socioeconomic influences on thyroid function among the Yakut (Sakha) of Eastern Siberia. Am J Hum Biol. 2013;25:814-820. doi: https://doi.org/10.1002/ajhb.22457
30. Fidianingsih I, Nurmasitoh T, Arjana AZ, et al. Mild anxiety and depression related to elevated dopamine level in young adults. Univ Med. 2019;38:48-55. doi: https://doi.org/10.18051/UnivMed.2019.v38.48-55
31. Tipisova EV, Gorenko IN, Popkova VA, et al. The relationship between blood thyroid hormone and dopamine levels in residents of the arctic regions of Russia. International Journal of Biomedicine. 2019;9(1):43-47. doi: https://doi.org/10.21103/Article9(1)_OA8
32. Kostenko EV, Manevich TM, Razumov NA. Desynchronosis as one of the most important factors of cerebrovascular disease. Lechebnoe delo. 2013;2:104-116. (In Russ.)
Supplementary files
Review
For citations:
Tipisova E.V., Zyabisheva V.N., Alikina V.A., Elfimova A.E., Molodovskaya I.N. Study of the photoperiodic dynamics of the peripheral dopamine content in comparison with the thyroid profile in various groups of men from the European North. Problems of Endocrinology. 2024;70(2):11-22. (In Russ.) https://doi.org/10.14341/probl13286

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).