Activation markers of the stress system in patients with type 1 diabetes during hypoglycemia
https://doi.org/10.14341/probl13318
Abstract
BACKGROUND: Usually, a hypoglycemic episode occurs due to inadequacy of the administered insulin dose in accordance with the current physiological situation. Activated systems aimed at increasing blood glucose levels serve as precursors of hypoglycemia and markers of the severity of hyperinsulinemia. Therefore, determining their components can serve as a more subtle and sensitive approach to assessing the physiological appropriateness of different insulin therapy options.
AIM: To investigate the markers (biochemical, clinical, and morphological) and the degree of activation of the stress system preceding the development of hypoglycemic episodes in patients with type 1 diabetes (T1D) undergoing insulin therapy.
MATERIALS AND METHODS: A cross-sectional observational clinical study was conducted involving 74 patients with type 1 diabetes (T1D). All patients underwent examination, which included assessment of the history of hypoglycemic episodes, quality of life using the SF-36 questionnaire, levels of adrenocorticotropic hormone (ACTH), insulin-like growth factor-1 (IGF-1), cortisol, C-reactive protein (CRP), coagulation profile, and 24-hour urinary cortisol excretion. Evaluation of patients’ sleep characteristics was performed based on the results of completed questionnaires: Sleep Questionnaire and Epworth Sleepiness Scale. Patients underwent overnight polysomnography (PSG) with interpretation according to the AASM 2012 standards.
RESULTS: Patients with a higher frequency of hypoglycemic episodes showed a decrease in IGF-1 levels at all stages (140 [123:162]; 98 [93:121], p=0.005), worse quality of life scores across all domains of the SF-36 questionnaire (95 [88:100]; 84 [77:92], p=0.001). As the frequency of hypoglycemic episodes increased, polysomnography data revealed an increase in the number of awakenings lasting more than 3 minutes (2 [1:3]; 3 [2:4]; p=0.03), increased time spent in bed (493.1 [463.95:513.4]; 536.2 [511.6:551]; p=0.03), increased sleep duration (437.5 [430.05:468]; 489 [471.5:519], p=0.006), and in creased total sleep time (382.5 [321.75:422]; 439 [409.5:486], p=0.008).
CONCLUSION: An increase in the frequency of hypoglycemic episodes should be accompanied by activation of the stress response system; however, repeated episodes of hypoglycemia lead to depletion of the stress response system, as evidenced by a decrease in the level of IGF-1 in patients with frequent hypoglycemic episodes. Hypoglycemic episodes occurring not only during night time but also at other times disrupt the sleep structure by increasing the frequency of nocturnal awaken ings.
About the Authors
R. A. KaramullinaRussian Federation
Regina A. Karamullina
1 Pogodinskaya street, 119435 Moscow
Competing Interests:
Авторы данной статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.
S. M. Ismailova
Russian Federation
Sevindg M. Ismailova
Moscow
Competing Interests:
Авторы данной статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.
E. D. Pesheva
Russian Federation
Ekaterina D. Pesheva
Moscow
Competing Interests:
Авторы данной статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.
I. V. Poluboyarinova
Russian Federation
Irina V. Poluboyarinova, MD, PhD
Moscow
Competing Interests:
Авторы данной статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.
M. G. Poluektov
Russian Federation
Mikhail G. Poluektov, MD, PhD
Moscow
Competing Interests:
Авторы данной статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить
V. V. Fadeev
Russian Federation
Valentin V. Fadeev, MD, ScD, professor, corresponding member of the RAS
Moscow
Competing Interests:
Авторы данной статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.
References
1. Gerich JE. Lilly lecture 1988. Glucose counterregulation and its impact on diabetes mellitus. Diabetes. 1988;37(12):1608-1617. doi: https://doi.org/10.2337/diab.37.12.1608
2. Cryer PE. Glucose counterregulation in man. Diabetes. 1981;30(3):261-264. doi: https://doi.org/10.2337/diab.30.3.261
3. Sprague JE, Arbeláez AM. Glucose counterregulatory responses to hypoglycemia. Pediatr Endocrinol Rev. 2011;9(1):463-475
4. DeRosa MA, Cryer PE. Hypoglycemia and the sympathoadrenal system: neurogenic symptoms are largely the result of sympathetic neural, rather than adrenomedullary, activation. Am J Physiol Endocrinol Metab. 2004;287(1):E32-E41. doi: https://doi.org/10.1152/ajpendo.00539.2003
5. Macon EL, Devore MH, Lin YK, et al. Current and future therapies to treat impaired awareness of hypoglycemia. Frontiers in Pharmacology. 2023;24;14:1271814 doi: https://doi.org/10.3389/fphar.2023.1271814
6. Cryer PE. The barrier of hypoglycemia in diabetes. Diabetes. 2008;57(12):3169-3176. doi: https://doi.org/10.2337/db08-1084
7. Segel SA, Paramore DS, Cryer PE. Hypoglycemia-associated autonomic failure inadvanced type 2 diabetes. Diabetes. 2002;51(3):724-733. doi: https://doi.org/10.2337/diabetes.51.3.724
8. Khansari DN, Murgo AJ, Faith RE. Effects of stress on the immune system. Immunol Today. 1990;11(5):170-175. doi: https://doi.org/10.1016/0167-5699(90)90069-l
9. Dantzer R, Kelley KW. Stress and immunity: an integrated view of relationships between the brain and the immune system. Life Sci. 1989;44(26):1995-2008. doi: https://doi.org/10.1016/0024-3205(89)90345-7
10. Gerin W, Pickering TG, Glynn L, et al. An historical context for behavioral models of hypertension. J Psychosom Res. 2000;48(4-5):369-377. doi: https://doi.org/10.1016/s0022-3999(99)00095-1
11. Chida Y, Steptoe A. Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension.2010;55(4):1026-1032. doi: https://doi.org/10.1161/HYPERTENSIONAHA.109.146621
12. Taylor TR, Kamarck TW, Dianzumba S. Cardiovascular reactivity and left ventricular mass: an integrative review. Ann Behav Med. 2003;26(3):182-193. doi: https://doi.org/10.1207/S15324796ABM2603_03
13. Schwartz AR, Gerin W, Davidson KW, et al. Toward a causal model of cardiovascular responses to stress and the development of cardiovascular disease. Psychosom Med. 2003;65(1):22-35. doi: https://doi.org/10.1097/01.psy.0000046075.79922.61
14. Treiber FA, Kamarck T, Schneiderman N, et al. Cardiovascular reactivity and development of preclinical and clinical disease states. Psychosom Med. 2003;65(1):46-62. doi: https://doi.org/10.1097/00006842-200301000-00007
15. Austin AW, Wissmann T, von Kanel R. Stress and hemostasis: an update. Semin Thromb Hemost. 2013;39(8):902-912. doi: https://doi.org/10.1055/s-0033-1357487
16. Cryer PE. Glucose counterregulation: prevention and correction of hypoglycemia in humans. Am J Physiol. 1993;264(2 Pt 1):E149-E155. doi: https://doi.org/10.1152/ajpendo.1993.264.2.E149
17. Mitrakou A, Ryan C, Veneman T, et al. Hierarchy of glycemic thresholds for counterregulatory hormone secretion, symptoms, and cerebral dysfunction. Am J Physiol. 1991;260(1 Pt 1):E67-E74. doi: https://doi.org/10.1152/ajpendo.1991.260.1.E67
18. Schwartz NS, Clutter WE, Shah SD, et al. Glycemic thresholds for activation of glucose counterregulatory systems are higher than the threshold for symptoms. J Clin Invest. 1987;79(3):777-781. doi: https://doi.org/10.1172/JCI112884
19. Heller SR, Cryer PE. Reduced neuroendocrine and symptomatic responses to subsequent hypoglycemia after 1 episode of hypoglycemia in nondiabetic humans. Diabetes. 1991;40(2):223-226. doi: https://doi.org/10.2337/diab.40.2.223
20. Rickels MR. Hypoglycemia-associated autonomic failure, counterregulatory responses, and therapeutic options in type 1 diabetes. Ann N Y Acad Sci. 2019;1454(1):68-79. doi: https://doi.org/10.1111/nyas.1421
21. Bisgaard Bengtsen M, Møller N. Experimentally Induced Hypoglycemia-associated Autonomic Failure in Humans: Determinants, Designs, and Drawbacks. J Endocr Soc. 2022;6(10):bvac123. doi: https://doi.org/10.1210/jendso/bvac123
22. Ringholm Nielsen L, Juul A, Pedersen-Bjergaard U, et al. Lower levels of circulating IGF-I in Type 1 diabetic women with frequent severe hypoglycaemia during pregnancy. Diabet Med. 2008;25(7):826-833. doi: https://doi.org/10.1111/j.1464-5491.2008.02495.x
23. Færch L, Juul A, Pedersen-Bjergaard U, et al. Association of IGF1 with glycemic control and occurrence of severe hypoglycemia in patients with type 1 diabetes mellitus. Endocr Connect. 2012;1(1):31-36. doi: https://doi.org/10.1530/EC-12-0012
24. Perfect MM. Sleep-related disorders in patients with type 1 diabetes mellitus: current insights. Nat Sci Sleep. 2020;12:101-123. doi: https://doi.org/10.2147/NSS.S152555
25. Schultes B, Jauch-Chara K, Gais S, et al. Defective awakening response to nocturnal hypoglycemia in patients with type 1 diabetes mellitus. PLoS Med. 2007;4(2):e69. doi: https://doi.org/10.1371/journal.pmed.0040069
26. Banarer S, Cryer PE. Sleep-related hypoglycemia-associated autonomic failure in type 1 diabetes: reduced awakening from sleep during hypoglycemia. Diabetes. 2003;52(5):1195-1203. doi: https://doi.org/10.2337/diabetes.52.5.1195
27. Tesfaye N, Seaquist ER. Neuroendocrine responses to hypoglycemia. Ann N Y Acad Sci. 2010;1212:12-28. doi: https://doi.org/10.1111/j.1749-6632.2010.05820.x
28. Pickup J, Mattock M, Kerry S. Glycaemic control with continuous subcutaneous insulin infusion compared with intensive insulin injections in patients with type 1 diabetes: meta-analysis of randomised controlled trials. BMJ. 2002;324(7339):705. doi: https://doi.org/10.1136/bmj.324.7339.705
29. Siebenhofer A, Plank J, Berghold A, et al. Short acting insulin analogues versus regular human insulin in patients with diabetes mellitus. Cochrane Database Syst Rev. 2006;(2):CD003287. doi: https://doi.org/10.1002/14651858.CD003287.pub4
30. Fatourechi MM, Kudva YC, Murad MH, et al. Clinical review: Hypoglycemia with intensive insulin therapy: a systematic review and meta-analyses of randomized trials of continuous subcutaneous insulin infusion versus multiple daily injections. J Clin Endocrinol Metab. 2009;94(3):729-740. doi: https://doi.org/10.1210/jc.2008-1415
Supplementary files
|
1. Figure 1. Distribution of patients by groups. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(226KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Comparative assessment of IGF-1 and antithrombin-3 levels, as well as the number of awakenings lasting more than 3 minutes in patients with a frequency of hypoglycemia episodes ≤1 per week and >1 per week. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(400KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Comparative assessment of IGF-1, antithrombin 3 levels and the number of awakenings lasting more than 3 minutes in patients with a frequency of hypoglycemia episodes ≤3 per week and >3 per week. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(405KB)
|
Indexing metadata ▾ |
|
4. Figure 4. Comparative assessment of IGF-1 levels in patients with a frequency of hypoglycemia episodes ≤5 per week and >5 per week. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(113KB)
|
Indexing metadata ▾ |
|
5. Figure 5. Statistically significant differences depending on the frequency of hypoglycemia | |
Subject | ||
Type | Исследовательские инструменты | |
View
(354KB)
|
Indexing metadata ▾ |
Review
For citations:
Karamullina R.A., Ismailova S.M., Pesheva E.D., Poluboyarinova I.V., Poluektov M.G., Fadeev V.V. Activation markers of the stress system in patients with type 1 diabetes during hypoglycemia. Problems of Endocrinology. 2025;71(2):45-54. (In Russ.) https://doi.org/10.14341/probl13318

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).