Cognitive impairment in patients with obesity and impaired carbohydrate metabolism (dysglycemia)
https://doi.org/10.14341/probl13389
Abstract
Obesity is a chronic disease, heterogeneous in etiology and clinical manifestations, progressing with a natural course, characterized by excessive deposition of fat mass in the body. This pathological condition has taken on the scale of a global epidemic in recent years, which continues to progress steadily, currently affecting more than 2 billion people worldwide. Due to its heterogeneity, obesity has a negative impact on the work of almost all organs and systems of the body, contributing to the emergence of new concomitant diseases and pathological conditions that significantly worsen the quality of life of these patients. Thus, a close relationship between type 2 diabetes mellitus and cognitive impairment has long been known, as well as with a number of other somatic diseases: coronary heart disease, atherosclerosis, non-alcoholic fatty liver disease, dyslipidemia, malignant neoplasms and other associated pathological conditions against the background of overweight and obesity.
Currently, the problem of the relationship of cognitive impairment in patients with overweight or changes in the glycemic profile is very relevant, due to the high prevalence and insufficient study of this issue.
About the Authors
F. Kh. DzgoevaRussian Federation
Fatima Kh. Dzgoeva - MD, PhD.
Moscow
Competing Interests:
none
E. V. Ekusheva
Russian Federation
MD, PhD, Professor.
Moscow, Belgorod
Competing Interests:
none
V. V. Demidova
Russian Federation
Viktoria Demidova
11 Dm.Ulyanova street, 117036 Moscow
Competing Interests:
none
References
1. Dedov I.I., Mel’nichenko G.A., Shestakova M.V., Troshina E.A., Mazurina N.V., Shestakova E.A. et al. Russian national clinical recommendations for morbid obesity treatment in adults. 3rd revision (Morbid obesity treatment in adults). Obesity and metabolism. 2018;15(1):53-70. (In Russ.) https://doi.org/10.14341/omet2018153-70.
2. World Health Organization. Global Health Risks: mortality and burdenof disease attributable to selected major risks. 2009. http://www.who.int/healthinfo/global_burden_disease/global_health_risks/en/index.html.
3. Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083-1096. doi: https://doi.org/10.1016/S0140-6736(09)60318-4
4. Матвеева М.В., Самойлова Ю.Г., Жукова Н.Г. Ожирение и когнитивная дисфункция // Ожирение и метаболизм. — 2016. — Т. 13. — №3. — С. 3-8. doi: https://doi.org/10.14341/omet201633-8
5. http://www.who.int/ru/news-room/fact-sheets/detail/dementia
6. Екушева Е.В. Когнитивные нарушения — актуальная междисциплинарная проблема // РМЖ. — 2018. — Т. 12. — №I. — С. 32-37
7. Diagnostic and statistical manual of mental diseases. 5th ed. (DSM-5, DSM–V). Washington, DC: London: American Psychiatric Association, 2013. 970 p.
8. Боголепова А.Н., Васенина Е.Е., Гомзякова Н.А., Гусев Е.И., Дудченко Н.Г., и др. Клинические рекомендации «Когнитивные расстройства у пациентов пожилого и старческого возраста» // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2021; 121 (10-3): 6-137.
9. Hartanto A, Yong J, Toh W. Bidirectional Associations between Obesity and Cognitive Function in Midlife Adults: A Longitudinal Study. Nutrients. 2019;11(10):2343. doi: https://doi.org/10.3390/nu11102343
10. Pedditizi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing. 2016;45(1):14-21. doi: https://doi.org/10.1093/ageing/afv151
11. Anstey KJ, Cherbuin N, Budge M, Young J. Body mass index in midlife and late-life as a risk factor for dementia: A meta-analysis of prospective studies. Obes Rev. 2011. doi: https://doi.org/10.1111/j.1467-789X.2010.00825.x
12. Yang Y, Shields GS, Guo C, Liu Y. Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neurosci Biobehav Rev. 2018. doi: https://doi.org/10.1016/j.neubiorev.2017.11.020
13. Nascimento M de M, Kliegel M, Silva PST, et al. The Association of Obesity and Overweight with Executive Functions in Community-Dwelling Older Women. Int J Environ Res Public Health. 2023;20(3):2440. doi: https://doi.org/10.3390/ijerph20032440
14. Tuligenga RH, Dugravot A, Tabák AG, et al. Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: A post-hoc analysis of the Whitehall II cohort study. Lancet Diabetes Endocrinol. 2014. doi: https://doi.org/10.1016/S2213-8587(13)70192-X
15. Palta P, Carlson MC, Crum RM, et al. Diabetes and Cognitive Decline in Older Adults: The Ginkgo Evaluation of Memory Study. Journals Gerontol Ser A. 2018;73(1):123-130. doi: https://doi.org/10.1093/gerona/glx076
16. Rawlings AM, Sharrett AR, Schneider ALC, et al. Diabetes in Midlife and Cognitive Change Over 20 Years. Ann Intern Med. 2014;161(11):785. doi: https://doi.org/10.7326/M14-0737
17. Kinattingal N, Mehdi S, Undela K, et al. Prevalence of Cognitive Decline in Type 2 Diabetes Mellitus Patients: A Real-World Cross-Sectional Study in Mysuru, India. J Pers Med. 2023;13(3):524. doi: https://doi.org/10.3390/jpm13030524
18. Starostina E.G., Volodina M.N., Starostin I.V. Depression, cognitive dysfunction and other factors associated with 5-year overall mortality in type 2 diabetes mellitus: a pilot prospective observational study. Diabetes mellitus. 2022;25(4):327-337. (In Russ.) doi: https://doi.org/10.14341/DM12926.
19. Raji CA, Ho AJ, Parikshak NN, et al. Brain structure and obesity. Hum Brain Mapp. 2010;31(3):353-364. doi: https://doi.org/10.1002/hbm.20870
20. Schmitt LO, Gaspar JM. Obesity-Induced Brain Neuroinflammatory and Mitochondrial Changes. Metabolites. 2023;13(1):86. doi: https://doi.org/10.3390/metabo13010086
21. Salas-Venegas V, Flores-Torres RP, Rodríguez-Cortés YM, et al. The Obese Brain: Mechanisms of Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. Front Integr Neurosci. 2022;16. doi: https://doi.org/10.3389/fnint.2022.798995
22. Gannon OJ, Robison LS, Salinero AE, et al. High-fat diet exacerbates cognitive decline in mouse models of Alzheimer’s disease and mixed dementia in a sex-dependent manner. J Neuroinflammation. 2022. doi: https://doi.org/10.1186/s12974-022-02466-2
23. Ezkurdia A, Ramírez MJ, Solas M. Metabolic Syndrome as a Risk Factor for Alzheimer’s Disease: A Focus on Insulin Resistance. Int J Mol Sci. 2023;24(5):4354. doi: https://doi.org/10.3390/ijms24054354
24. Sims-Robinson C, Kim B, Feldman EL. Chapter 13–Diabetes and Cognitive Dysfunction. In Neurobiology of Brain Disorders; Zigmond MJ, Rowland LP, Coyle JT., Eds. Academic Press: San Diego, CA, USA, 2015; 189–201
25. Li X, Leng S, Song D. Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin Interv Aging. March 2015:549. doi: https://doi.org/10.2147/CIA.S74042
26. García-Cáceres C, Quarta C, Varela L, et al. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell. 2016;166(4):867-880. doi: https://doi.org/10.1016/j.cell.2016.07.028
27. Cai W, Xue C, Sakaguchi M, et al. Insulin regulates astrocyte gliotransmission and modulates behavior. J Clin Invest. 2018. doi: https://doi.org/10.1172/JCI99366
28. Steculorum SM, Solas M, Brüning JC. The paradox of neuronal insulin action and resistance in the development of aging-associated diseases. Alzheimer’s Dement. 2014. doi: https://doi.org/10.1016/j.jalz.2013.12.008
29. Smith PJ, Mabe S, Sherwood A, et al. Association Between Insulin Resistance, Plasma Leptin, and Neurocognition in Vascular Cognitive Impairment. J Alzheimer’s Dis. 2019;71(3):921-929. doi: https://doi.org/10.3233/JAD-190569
30. Feinkohl I, Janke J, Slooter AJC, Winterer G, Spies C, Pischon T. Plasma leptin, but not adiponectin, is associated with cognitive impairment in older adults. Psychoneuroendocrinology. 2020;120:104783. doi: https://doi.org/10.1016/j.psyneuen.2020.104783
Supplementary files
|
1. Figure 1. Decreased volume of gray and white matter in the frontal lobes, anterior cingulate gyrus (a — blue arrow), hippocampus (b — black arrow) and basal ganglia (c — green frame) in obese patients according to magnetic resonance morphometry. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(199KB)
|
Indexing metadata ▾ |
|
2. Figure 2. The role of obesity in the development of systemic inflammation and mitochondrial dysfunction. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(211KB)
|
Indexing metadata ▾ |
|
3. Figure 3. The main mechanisms of insulin influence on the pathogenesis of Alzheimer's disease [23]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(464KB)
|
Indexing metadata ▾ |
|
4. Figure 4. The role of insulin resistance and insulin deficiency in the development of Alzheimer's disease [25]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(122KB)
|
Indexing metadata ▾ |
Review
For citations:
Dzgoeva F.Kh., Ekusheva E.V., Demidova V.V. Cognitive impairment in patients with obesity and impaired carbohydrate metabolism (dysglycemia). Problems of Endocrinology. 2024;70(4):75-83. (In Russ.) https://doi.org/10.14341/probl13389

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).