Preview

Problems of Endocrinology

Advanced search

Non-classical hormones from the fibroblast growth factor family

https://doi.org/10.14341/probl13441

Abstract

Fibroblast growth factors (FGFs) are a group of signaling molecules named for their ability to promote the growth and proliferation of fibroblasts and various other cell types. Typically, FGFs exert their effects locally by binding to receptors within the tissues where they are synthesized. However, certain members of this family, such as FGF 19, FGF 21, and FGF 23, diverge from this pattern. Following synthesis, these FGFs enter the bloodstream and act on distant organs and tissues by binding to their receptors and associated cofactors, thereby classified as non-classical hormones within the FGF family.

The biological functions of FGFs are diverse and contingent upon the specific receptors and cofactors involved in their signaling pathways. For instance, FGF 19 and FGF 21 play crucial roles in regulating glucose and lipid metabolism, whereas FGF 23 primarily influences phosphorus metabolism. Given their varied roles, FGFs present promising targets for therapeutic interventions and drug development.

This review aims to consolidate current understanding of FGF family hormones, elucidating their biological impacts and exploring their potential applications as therapeutic targets.

About the Authors

S. A. Gronskaia
Endocrinology Research Centre
Russian Federation

Sofya A. Gronskaia – MD.

11 Dm. Ulyanova street, 117036 Moscow


Competing Interests:

none



N. V. Rusyaeva
Endocrinology Research Centre
Russian Federation

Nadezhda V. Rusyaeva - MD, PhD student.

Moscow


Competing Interests:

none



Zh. E. Belaya
Endocrinology Research Centre
Russian Federation

Zhanna E. Belaya - MD, PhD, Professor.

Moscow


Competing Interests:

none



G. A. Melnichenko
Endocrinology Research Centre
Russian Federation

Galina A. Melnichenko - MD, PhD, Professor.

Moscow


Competing Interests:

none



References

1. Hui Q, Jin Z, Li X, Liu C, Wang X. FGF Family: From Drug Development to Clinical Application. Int J Mol Sci. 2018;19(7):1875. doi: https://doi.org/10.3390/ijms19071875

2. Angelin B, Larsson TE, Rudling M. Circulating Fibroblast Growth Factors as Metabolic Regulators—A Critical Appraisal. Cell Metab. 2012;16(6):693-705. doi: https://doi.org/10.1016/j.cmet.2012.11.001

3. Somm E, Jornayvaz FR. Fibroblast Growth Factor 15/19: From Basic Functions to Therapeutic Perspectives. Endocr Rev. 2018;39(6):960-989. doi: https://doi.org/10.1210/er.2018-00134

4. Zhao Y, Meng C, Wang Y, et al. IL-1β inhibits β-Klotho expression and FGF19 signaling in hepatocytes. Am J Physiol-Endocrinol Metab. 2016;310(4):E289-E300. doi: https://doi.org/10.1152/ajpendo.00356.2015

5. Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima Y ichi. Impaired negative feedback suppression of bile acid synthesis in mice lacking βKlotho. J Clin Invest. 2005;115(8):2202-2208. doi: https://doi.org/10.1172/JCI23076

6. Kir S, Beddow SA, Samuel VT, et al. FGF19 as a Postprandial, Insulin-Independent Activator of Hepatic Protein and Glycogen Synthesis. Science. 2011;331(6024):1621-1624. doi: https://doi.org/10.1126/science.1198363

7. Potthoff MJ, Boney-Montoya J, Choi M, et al. FGF15/19 Regulates Hepatic Glucose Metabolism by Inhibiting the CREB-PGC-1α Pathway. Cell Metab. 2011;13(6):729-738. doi: https://doi.org/10.1016/j.cmet.2011.03.019

8. Gómez-Ambrosi J, Gallego-Escuredo JM, Catalán V, et al. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin Nutr. 2017;36(3):861-868. doi: https://doi.org/10.1016/j.clnu.2016.04.027

9. Perry RJ, Lee S, Ma L, Zhang D, Schlessinger J, Shulman GI. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic–pituitary–adrenal axis. Nat Commun. 2015;6(1):6980. doi: https://doi.org/10.1038/ncomms7980

10. Benoit B, Meugnier E, Castelli M, et al. Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat Med. 2017;23(8):990-996. doi: https://doi.org/10.1038/nm.4363

11. Guo A, Li K, Tian H, et al. FGF19 protects skeletal muscle against obesity‐induced muscle atrophy, metabolic derangement and abnormal irisin levels via the AMPK/SIRT‐1/PGC‐α pathway. J Cell Mol Med. 2021;25(7):3585-3600. doi: https://doi.org/10.1111/jcmm.16448

12. Guo A, Li K, Tian HC, Tao BL, Xiao Q, Jiang DM. FGF19 protects against obesity-induced bone loss by promoting osteogenic differentiation. Biomed Pharmacother. 2022;146:112524. doi: https://doi.org/10.1016/j.biopha.2021.112524

13. Yamamoto S, Koyama D, Igarashi R, et al. Serum Endocrine Fibroblast Growth Factors as Potential Biomarkers for Chronic Kidney Disease and Various Metabolic Dysfunctions in Aged Patients. Intern Med. 2020;59(3):345-355. doi: https://doi.org/10.2169/internalmedicine.3597-19

14. Padrissa-Altés S, Bachofner M, Bogorad RL, et al. Control of hepatocyte proliferation and survival by Fgf receptors is essential for liver regeneration in mice. Gut. 2015;64(9):1444-1453. doi: https://doi.org/10.1136/gutjnl-2014-307874

15. Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta BBA - Gene Struct Expr. 2000;1492(1):203-206. doi: https://doi.org/10.1016/S0167-4781(00)00067-1

16. Chen Z, Yang L, Liu Y, Huang P, Song H, Zheng P. The potential function and clinical application of FGF21 in metabolic diseases. Front Pharmacol. 2022;13:1089214. doi: https://doi.org/10.3389/fphar.2022.1089214

17. Szczepańska E, Gietka-Czernel M. FGF21: A Novel Regulator of Glucose and Lipid Metabolism and Whole-Body Energy Balance. Horm Metab Res. 2022;54(04):203-211. doi: https://doi.org/10.1055/a-1778-4159

18. Minard AY, Tan SX, Yang P, et al. mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep. 2016;17(1):29-36. doi: https://doi.org/10.1016/j.celrep.2016.08.086

19. Díaz-Delfín J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F. TNF-α Represses β-Klotho Expression and Impairs FGF21 Action in Adipose Cells: Involvement of JNK1 in the FGF21 Pathway. Endocrinology. 2012;153(9):4238-4245. doi: https://doi.org/10.1210/en.2012-1193

20. Wang L, Mazagova M, Pan C, et al. YIPF6 controls sorting of FGF21 into COPII vesicles and promotes obesity. Proc Natl Acad Sci. 2019;116(30):15184-15193. doi: https://doi.org/10.1073/pnas.1904360116

21. Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol. 2020;16(11):654-667. doi: https://doi.org/10.1038/s41574-020-0386-0

22. Frayling TM, Beaumont RN, Jones SE, et al. A Common Allele in FGF21 Associated with Sugar Intake Is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure. Cell Rep. 2018;23(2):327-336. doi: https://doi.org/10.1016/j.celrep.2018.03.070

23. Dushay JR, Toschi E, Mitten EK, Fisher FM, Herman MA, Maratos-Flier E. Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Mol Metab. 2015;4(1):51-57. doi: https://doi.org/10.1016/j.molmet.2014.09.008

24. Yilmaz U, Tekin S, Demir M, Cigremis Y, Sandal S. Effects of central FGF21 infusion on the hypothalamus–pituitary–thyroid axis and energy metabolism in rats. J Physiol Sci. 2018;68(6):781-788. doi: https://doi.org/10.1007/s12576-018-0595-7

25. Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115(6):1627-1635. doi: https://doi.org/10.1172/JCI23606

26. BonDurant LD, Ameka M, Naber MC, et al. FGF21 Regulates Metabolism Through Adipose-Dependent and -Independent Mechanisms. Cell Metab. 2017;25(4):935-944.e4. doi: https://doi.org/10.1016/j.cmet.2017.03.005

27. Véniant MM, Hale C, Helmering J, et al. FGF21 Promotes Metabolic Homeostasis via White Adipose and Leptin in Mice. Siegmund B, ed. PLoS ONE. 2012;7(7):e40164. doi: https://doi.org/10.1371/journal.pone.0040164

28. Douris N, Stevanovic DM, Fisher FM, et al. Central Fibroblast Growth Factor 21 Browns White Fat via Sympathetic Action in Male Mice. Endocrinology. 2015;156(7):2470-2481. doi: https://doi.org/10.1210/en.2014-2001

29. Kwon MM, O’Dwyer SM, Baker RK, Covey SD, Kieffer TJ. FGF21-Mediated Improvements in Glucose Clearance Require Uncoupling Protein 1. Cell Rep. 2015;13(8):1521-1527. doi: https://doi.org/10.1016/j.celrep.2015.10.021

30. Lin Z, Tian H, Lam KSL, et al. Adiponectin Mediates the Metabolic Effects of FGF21 on Glucose Homeostasis and Insulin Sensitivity in Mice. Cell Metab. 2013;17(5):779-789. doi: https://doi.org/10.1016/j.cmet.2013.04.005

31. Holland WL, Adams AC, Brozinick JT, et al. An FGF21-Adiponectin-Ceramide Axis Controls Energy Expenditure and Insulin Action in Mice. Cell Metab. 2013;17(5):790-797. doi: https://doi.org/10.1016/j.cmet.2013.03.019

32. Shimizu M, Sato R. Endocrine Fibroblast Growth Factors in Relation to Stress Signaling. Cells. 2022;11(3):505. doi: https://doi.org/10.3390/cells11030505

33. Tang Y, Zhang M. Fibroblast growth factor 21 and bone homeostasis. Biomed J. 2023;46(4):100548. doi: https://doi.org/10.1016/j.bj.2022.07.002

34. Morovat A, Weerasinghe G, Nesbitt V, et al. Use of FGF-21 as a Biomarker of Mitochondrial Disease in Clinical Practice. J Clin Med. 2017;6(8):80. doi: https://doi.org/10.3390/jcm6080080

35. Charles ED, Neuschwander‐Tetri BA, Pablo Frias J, et al. Pegbelfermin (BMS‐986036), PEGylated FGF21, in Patients with Obesity and Type 2 Diabetes: Results from a Randomized Phase 2 Study. Obesity. 2019;27(1):41-49. doi: https://doi.org/10.1002/oby.22344

36. Brown EA, Minnich A, Sanyal AJ, et al. Effect of pegbelfermin on NASH and fibrosis-related biomarkers and correlation with histological response in the FALCON 1 trial. JHEP Rep. 2023;5(4):100661. doi: https://doi.org/10.1016/j.jhepr.2022.100661

37. Charoenphandhu N, Suntornsaratoon P, Krishnamra N, et al. Fibroblast growth factor-21 restores insulin sensitivity but induces aberrant bone microstructure in obese insulin-resistant rats. J Bone Miner Metab. 2017;35(2):142-149. doi: https://doi.org/10.1007/s00774-016-0745-z

38. Gronskaia SA, Belaya ZhE, Melnichenko GA. FGF23 tumor induced osteomalacia. Probl Endocrinol. 2022;68(5):56-66 (In Russ.). doi: https://doi.org/10.14341/probl13130

39. Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol-Ren Physiol. 2010;299(4):F882-F889. doi: https://doi.org/10.1152/ajprenal.00360.2010

40. Singh S, Grabner A, Yanucil C, et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 2016;90(5):985-996. doi: https://doi.org/10.1016/j.kint.2016.05.019

41. Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393-4408. doi: https://doi.org/10.1172/JCI46122

42. Rossaint J, Oehmichen J, Van Aken H, et al. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Invest. 2016;126(3):962-974. doi: https://doi.org/10.1172/JCI83470

43. Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370-1378. doi: https://doi.org/10.1038/ki.2011.47

44. Roy C, Lejeune S, Slimani A, et al. Fibroblast growth factor 23: a biomarker of fibrosis and prognosis in heart failure with preserved ejection fraction. ESC Heart Fail. 2020;7(5):2494-2507. doi: https://doi.org/10.1002/ehf2.12816

45. Gronskaia SA, Belaya ZhE, Rozhinskaya LYa, et al. Clinical features, diagnostics and treatment of FGF23 secreting tumors: series of 40 clinical cases. Probl Endocrinol. 2023;69(5):25-38 (In Russ.). doi: https://doi.org/10.14341/probl13221

46. Grebennikova TA, Belaya ZE, Tsoriev TT, Rozhinskaya LY, Melnichenko GA. The endocrine function of the bone tissue. Osteoporos Bone Dis. 2015;18(1):28-37 (In Russ.). doi: https://doi.org/10.14341/osteo2015128-37

47. Grebennikova TA, Umiarova DSh, Slashchuk KY, et al. Tumor-induced osteomalacia: a clinical case report. Osteoporos Bone Dis. 2019;21(4):24-28 (In Russ.). doi: https://doi.org/10.14341/osteo10264

48. Rodionova SS, Snetkov AI, Akinshina AD, et al. Hypophosphatemic osteomalacia induced by FGF23-secreting tumor of the left femur. Rheumatol Sci Pract. 2019;57(6):708-712 (In Russ.). doi: https://doi.org/10.14412/1995-4484-2019-708-712

49. Ovchinnikov AYu, Khon EM, Bakotina AV, Miroshnichenko NA, Gronskaia SA, Belaya ZhE. FGF23 tumor induced osteomalacia with localization of neoplasm in the tympanic cavity. Vestn Otorinolaringol. 2023;88(6):91 (In Russ.). doi: https://doi.org/10.17116/otorino20238806191

50. Gronskaya SA, Golounina OO, Buklemishev YuV, et al. A clinical case of phosphopenic osteomalacia due to paraneoplastic secretion of metastatic prostate cance. Osteoporos Bone Dis. 2023;25(4):43-51 (In Russ.). doi: https://doi.org/10.14341/osteo12948

51. Colazo JM, Thompson RC, Covington NV, Dahir KM. An intracranial mass causing tumor-induced osteomalacia (TIO): Rapid and complete resolution of severe osteoporosis after surgical resection. Radiol Case Rep. 2020;15(5):492-497. doi: https://doi.org/10.1016/j.radcr.2020.01.039

52. Minisola S, Fukumoto S, Xia W, et al. Tumor-induced Osteomalacia: A Comprehensive Review. Endocr Rev. 2023;44(2):323-353. doi: https://doi.org/10.1210/endrev/bnac026

53. Mansinho A, Ferreira AR, Casimiro S, et al. Levels of Circulating Fibroblast Growth Factor 23 (FGF23) and Prognosis in Cancer Patients with Bone Metastases. Int J Mol Sci. 2019;20(3):695. doi: https://doi.org/10.3390/ijms20030695

54. Weidner H, Baschant U, Lademann F, et al. Increased FGF-23 levels are linked to ineffective erythropoiesis and impaired bone mineralization in myelodysplastic syndromes. JCI Insight. 2020;5(15):e137062. doi: https://doi.org/10.1172/jci.insight.137062

55. Suvannasankha A, Tompkins DR, Edwards DF, et al. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells. Oncotarget. 2015;6(23):19647-19660. doi: https://doi.org/10.18632/oncotarget.3794

56. Cymbaluk-Płoska A, Gargulińska P, Chudecka-Głaz A, Kwiatkowski S, Pius-Sadowska E, Machaliński B. The Suitability of FGF21 and FGF23 as New Biomarkers in Endometrial Cancer Patients. Diagnostics. 2020;10(6):414. doi: https://doi.org/10.3390/diagnostics10060414


Supplementary files

1. Figure 1. Structure of the FGF family.
Subject
Type Research Instrument
View (255KB)    
Indexing metadata ▾
2. Figure 2. Effects of FGF 21.
Subject
Type Research Instrument
View (181KB)    
Indexing metadata ▾
3. Figure 3. Effects of FGF 21.
Subject
Type Research Instrument
View (248KB)    
Indexing metadata ▾
4. Figure 4. Effects of FGF 23.
Subject
Type Research Instrument
View (349KB)    
Indexing metadata ▾

Review

For citations:


Gronskaia S.A., Rusyaeva N.V., Belaya Zh.E., Melnichenko G.A. Non-classical hormones from the fibroblast growth factor family. Problems of Endocrinology. 2024;70(5):23-33. (In Russ.) https://doi.org/10.14341/probl13441

Views: 1550


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)