Overview of the prevalence and features of oncological diseases in type 2 diabetes and possible immunological mechanisms
https://doi.org/10.14341/probl13452
Abstract
Worldwide, the number of patients with diabetes has quadrupled over the past three decades. Every eleventh adult is currently diagnosed with diabetes mellitus, 90% of which are type 2 diabetes mellitus (DM2). Generally recognized complications of chronic hyperglycemia include micro- and macrovascular changes, damage to peripheral and/or autonomous nerve fibers. Scientists have also long discussed the relationship between an increase in the number of certain cancers and the presence of DM2. Based on the presence of common risk factors such as age, ethnicity, dietary habits and physical activity, many epidemiological and experimental studies are being conducted, which gradually contribute to understanding the relationship between these diseases. Taking into account the results of numerous studies, hyperglycemia, hyperinsulinemia and chronic inflammation, which are observed in DM 2, have a positive association with an increased risk of certain types of malignancies. In this article, the authors consider pathological changes in DM2 that potentiate the development of oncological diseases and epidemiological data reflecting the correlation between DM2 and the occurrence of malignant tumors.
About the Authors
Ya. V. DvoryanchikovRussian Federation
Yaroslav V. Dvoryanchikov
11 Dm.Ulyanova street, 117036 Moscow
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов.
S. M. Deunezhewa
Russian Federation
Salima M. Deunezhewa
Moscow
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов.
I. A. Yatskov
Russian Federation
Igor A. Yatskov
Simferopol
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов
V. A. Beloglazov
Russian Federation
Vladimir A. Beloglazov, MD, PhD, Professor
Simferopol
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов.
References
1. Satija A, Spiegelman D, Giovannucci E, Hu FB. Type 2 diabetes and risk of cancer. BMJ. 2015;350(jan02 1):g7707-g7707. doi: https://doi.org/10.1136/bmj.g7707
2. Zhu B, Qu S. The Relationship Between Diabetes Mellitus and Cancers and Its Underlying Mechanisms. Frontiers in Endocrinology. 2022;13. doi: https://doi.org/10.3389/fendo.2022.800995
3. Bansal D, Bhansali A, Kapil G, Undela K, Tiwari P. Type 2 diabetes and risk of prostate cancer: a meta-analysis of observational studies. Prostate Cancer and Prostatic Diseases. 2012;16(2):151-158. doi: https://doi.org/10.1038/pcan.2012.40
4. Saarela K, Tuomilehto J, Sund R, Keskimäki I, Hartikainen S, Pukkala E. Cancer incidence among Finnish people with type 2 diabetes during 1989–2014. European Journal of Epidemiology. 2018;34(3):259-265. doi: https://doi.org/10.1007/s10654-018-0438-0
5. Dan C, Zhang H, Zeng WJ, et al. HNF1B expression regulates ECI2 gene expression, potentially serving a role in prostate cancer progression. Oncol Lett. Published online November 2018. doi: https://doi.org/10.3892/ol.2018.9677
6. Suh S, Kim KW. Diabetes and Cancer: Cancer Should Be Screened in Routine Diabetes Assessment. Diabetes & Metabolism Journal. 2019;43(6):733. doi: https://doi.org/10.4093/dmj.2019.0177
7. Morales DR, Morris AD. Metformin in Cancer Treatment and Prevention. Annual Review of Medicine. 2015;66(1):17-29. doi: https://doi.org/10.1146/annurev-med-062613-093128
8. Gallagher EJ, LeRoith D. Obesity and Diabetes: The Increased Risk of Cancer and Cancer-Related Mortality. Physiological Reviews. 2015;95(3):727-748. doi: https://doi.org/10.1152/physrev.00030.2014
9. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin Receptor Isoforms and Insulin Receptor/Insulin-Like Growth Factor Receptor Hybrids in Physiology and Disease. Endocrine Reviews. 2009;30(6):586-623. doi: https://doi.org/10.1210/er.2008-0047
10. Hamza Chettouh, Laetitia Fartoux, Aoudjehane L, et al. Mitogenic Insulin Receptor-A Is Overexpressed in Human Hepatocellular Carcinoma due to EGFR-Mediated Dysregulation of RNA Splicing Factors. Cancer Res. 2013;73(13):3974-3986. doi: https://doi.org/10.1158/0008-5472.can-12-3824
11. Furuya Y, Sekine Y, Kato H, Miyazawa Y, Koike H, Suzuki K. Low-density lipoprotein receptors play an important role in the inhibition of prostate cancer cell proliferation by statins. Prostate International. 2016;4(2):56-60. doi: https://doi.org/10.1016/j.prnil.2016.02.003
12. Han L, Ma Q, Li J, et al. High Glucose Promotes Pancreatic Cancer Cell Proliferation via the Induction of EGF Expression and Transactivation of EGFR. Guan X, ed. PLoS ONE. 2011;6(11):e27074. doi: https://doi.org/10.1371/journal.pone.0027074
13. Khalid M, Petroianu G, Adem A. Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules. 2022;12(4):542. doi: https://doi.org/10.3390/biom12040542
14. Huang H. Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. Sensors. 2018;18(10):3249. doi: https://doi.org/10.3390/s18103249
15. Xuan T, Kim S, Song H, Park B. Increased risk of cancer and cancer related mortality in middle-aged Korean women with prediabetes and diabetes: a population-based study. Epidemiology and Health. Published online August 28, 2023:e2023080-e2023080. doi: https://doi.org/10.4178/epih.e2023080
16. Shin HS, Jun BG, Yi SW. Impact of diabetes, obesity, and dyslipidemia on the risk of hepatocellular carcinoma in patients with chronic liver diseases. Clinical and Molecular Hepatology. 2022;28(4):773-789. doi: https://doi.org/10.3350/cmh.2021.0383
17. Nakatsuka T, Tateishi R. Development and prognosis of hepatocellular carcinoma in patients with diabetes. Clin Mol Hepatol. 2023;29(1):51-64. doi: https://doi.org/10.3350/cmh.2022.0095
18. Davila JA. Diabetes increases the risk of hepatocellular carcinoma in the Unite States: a population based case control study. Gut. 2005;54(4):533-539. doi: https://doi.org/10.1136/gut.2004.052167
19. Lawson DH, Gray JM, McKillop C, Clarke J, Lee FD, Patrick RS. Diabetes mellitus and primary hepatocellular carcinoma. The Quarterly Journal of Medicine. 1986;61(234):945-955. doi: https://pubmed.ncbi.nlm.nih.gov/2819932
20. Dyson J, Jaques B, Chattopadyhay D, et al. Hepatocellular cancer: The impact of obesity, type 2 diabetes and a multidisciplinary team. Journal of Hepatology. 2014;60(1):110-117. doi: https://doi.org/10.1016/j.jhep.2013.08.011
21. Wang C, Wang X, Gong G, et al. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: A systematic review and metaanalysis of cohort studies. International Journal of Cancer. 2011;130(7):1639-1648. doi: https://doi.org/10.1002/ijc.26165
22. Faulds MH, Dahlman-Wright K. Metabolic diseases and cancer risk. Current Opinion in Oncology. 2012;24(1):58-61. doi: https://doi.org/10.1097/CCO.0b013e32834e0582
23. Noureddin M, Rinella ME. Nonalcoholic Fatty Liver Disease, Diabetes, Obesity, and Hepatocellular Carcinoma. Clinics in Liver Disease. 2015;19(2):361-379. doi: https://doi.org/10.1016/j.cld.2015.01.012
24. Ajmera V, Cepin S, Tesfai K, et al. A prospective study on the prevalence of NAFLD, advanced fibrosis, cirrhosis and hepatocellular carcinoma in people with type 2 diabetes. J Hepatol. 2023;78(3):471-478. doi: https://doi.org/10.1016/j.jhep.2022.11.010
25. Teng PC, Huang DQ, Lin TY, Noureddin M, Yang JD. Diabetes and Risk of Hepatocellular Carcinoma in Cirrhosis Patients with Nonalcoholic Fatty Liver Disease. Gut and Liver. Published online December 2022. doi: https://doi.org/10.5009/gnl220357
26. McGlynn KA, Petrick JL, El‐Serag HB. Epidemiology of Hepatocellular Carcinoma. Hepatology. 2020;73(S1). doi: https://doi.org/10.1002/hep.31288
27. Sagnelli E, Macera M, Russo A, Coppola N, Sagnelli C. Epidemiological and etiological variations in hepatocellular carcinoma. Infection. 2019;48(1):7-17. doi: https://doi.org/10.1007/s15010-019-01345-y
28. Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nature Reviews Disease Primers. 2021;7(1):1-28. doi: https://doi.org/10.1038/s41572-020-00240-3
29. Roy A, Sahoo J, Kamalanathan S, Naik D, Mohan P, Kalayarasan R. Diabetes and pancreatic cancer: Exploring the two-way traffic. World Journal of Gastroenterology. 2021;27(30):4939-4962. doi: https://doi.org/10.3748/wjg.v27.i30.4939
30. Liao WC, Tu YK, Wu MS, Lin JT, Wang HP, Chien KL. Blood glucose concentration and risk of pancreatic cancer: systematic review and dose-response meta-analysis. BMJ. 2015;349(jan02 3): g7371-g7371. doi: https://doi.org/10.1136/bmj.g7371
31. Cai J, Chen H, Lu M, et al. Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis. Cancer Letters. 2021; 520:1-11. doi: https://doi.org/10.1016/j.canlet.2021.06.027
32. Ben Q, Xu M, Ning X, et al. Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. European Journal of Cancer. 2011;47(13):1928-1937. doi: https://doi.org/10.1016/j.ejca.2011.03.003
33. Yuan C, Babic A, Khalaf N, et al. Diabetes, Weight Change, and Pancreatic Cancer Risk. JAMA Oncology. 2020;6(10):e202948. doi: https://doi.org/10.1001/jamaoncol.2020.2948
34. Khadka R, Tian W, Hao X, Koirala R. Risk factor, early diagnosis and overall survival on outcome of association between pancreatic cancer and diabetes mellitus: Changes and advances, a review. International Journal of Surgery. 2018;52:342-346. doi: https://doi.org/10.1016/j.ijsu.2018.02.058
35. Sharma A, Chari ST. Pancreatic Cancer and Diabetes Mellitus. Current Treatment Options in Gastroenterology. 2018;16(4):466-478. doi: https://doi.org/10.1007/s11938-018-0197-8
36. Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nature Reviews Gastroenterology & Hepatology. 2021;18(7):493-502. doi: https://doi.org/10.1038/s41575-021-00457-x
37. Hart PA, Bellin MD, Andersen DK, et al. Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer. The Lancet Gastroenterology & Hepatology. 2016;1(3):226-237. doi: https://doi.org/10.1016/s2468-1253(16)30106-6
38. Yu GH, Li SF, Wei R, Jiang Z. Diabetes and Colorectal Cancer Risk: Clinical and Therapeutic Implications. Chiefari E, ed. Journal of Diabetes Research. 2022; 2022:1-16. doi: https://doi.org/10.1155/2022/1747326
39. Ma Y, Yang W, Song M, et al. Type 2 diabetes and risk of colorectal cancer in two large U.S. prospective cohorts. British Journal of Cancer. 2018;119(11):1436-1442. doi: https://doi.org/10.1038/s41416-018-0314-4
40. Cheng HC, Chang TK, Su WC, Tsai HL, Wang JY. Narrative review of the influence of diabetes mellitus and hyperglycemia on colorectal cancer risk and oncological outcomes. Translational Oncology. 2021;14(7):101089. doi: https://doi.org/10.1016/j.tranon.2021.101089
41. Vekic J, Zeljkovic A, Stefanovic A, Giglio RV, Ciaccio M, Rizzo M. Diabetes and Colorectal Cancer Risk: A New Look at Molecular Mechanisms and Potential Role of Novel Antidiabetic Agents. International Journal of Molecular Sciences. 2021;22(22):12409. doi: https://doi.org/10.3390/ijms222212409
42. Zhu B, Wu X, Wu B, Pei D, Zhang L, Wei L. The relationship between diabetes and colorectal cancer prognosis: A meta-analysis based on the cohort studies. Katoh M, ed. PLOS ONE. 2017;12(4): e0176068. doi: https://doi.org/10.1371/journal.pone.0176068
43. Cejuela M, Martin-Castillo B, Menendez JA, Pernas S. Metformin and Breast Cancer: Where Are We Now? International Journal of Molecular Sciences. 2022;23(5):2705. doi: https://doi.org/10.3390/ijms23052705
44. Xiong F, Dai Q, Zhang S, et al. Diabetes and incidence of breast cancer and its molecular subtypes: A systematic review and meta analysis. Diabetes-metabolism Research and Reviews. Published online August 2023. doi: https://doi.org/10.1002/dmrr.3709
45. Lipscombe LL, Fischer HD, Austin PC, et al. The association between diabetes and breast cancer stage at diagnosis: a population-based study. Breast Cancer Research and Treatment. 2015;150(3):613-620. doi: https://doi.org/10.1007/s10549-015-3323-5
46. Chou P, Choi HH, Huang Y, et al. Impact of diabetes on promoting the growth of breast cancer. Cancer Communications. 2021;41(5):414-431. doi: https://doi.org/10.1002/cac2.12147
47. Miller B, Chalfant H, Thomas A, et al. Diabetes, Obesity, and Inflammation: Impact on Clinical and Radiographic Features of Breast Cancer. International Journal of Molecular Sciences. 2021;22(5):2757. doi: https://doi.org/10.3390/ijms22052757.
48. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a Cancer Journal for Clinicians. 2021;71(3):209-249. doi: https://acsjournals.onlinelibrary.wiley.com/doi/10.3322/caac.21660
49. Makker V, MacKay H, Ray-Coquard I, et al. Endometrial cancer. Nature Reviews Disease Primers. 2021;7(1). doi: https://doi.org/10.1038/s41572-021-00324-8
50. Muhammad Mujammami, Rafiullah M, Alfadda AA, et al. Proteomic Analysis of Endometrial Cancer Tissues from Patients with Type 2 Diabetes Mellitus. Life. 2022;12(4):491-491. doi: https://doi.org/10.3390/life12040491
51. Zabuliene L, Kaceniene A, Steponaviciene L, et al. Risk of Endometrial Cancer in Women with Diabetes: A Population-Based Retrospective Cohort Study. Journal of Clinical Medicine. 2021;10(16):3453. doi: https://doi.org/10.3390/jcm10163453.
52. Heidari F, Rabizadeh S, Salome Sadat Salehi, et al. Serum HSP70 level in patients with endometrial cancer with and without diabetes. Gynecological Endocrinology.2019;36(4):351-355. doi: https://doi.org/10.1080/09513590.2019.1648415
53. Marks F, Fürstenberger G, Müller-Decker K. Tumor Promotion as a Target of Cancer Prevention. In: Cancer Prevention. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007:37-47. doi: https://doi.org/10.1007/978-3-540-37696-5_3
54. Goddi A, Schroedl L, Brey EM, Cohen RN. Laminins in metabolic tissues. Metabolism. 2021; 120:154775. doi: https://doi.org/10.1016/j.metabol.2021.154775
55. Wang E, Aifantis I. RNA Splicing and Cancer. Trends in Cancer. 2020;6(8):631-644. doi: https://doi.org/10.1016/j.trecan.2020.04.011
56. Lin SL, Lin CY, Lee W, Teng CF, Shyu WC, Jeng LB. Mini Review: Molecular Interpretation of the IGF/IGF-1R Axis in Cancer Treatment and Stem Cells-Based Therapy in Regenerative Medicine. International Journal of Molecular Sciences. 2022;23(19):11781. doi: https://doi.org/10.3390/ijms231911781
57. Pang Y, Kartsonaki C, Guo Y, et al. Diabetes, plasma glucose and incidence of colorectal cancer in Chinese adults: a prospective study of 0.5 million people. Journal of Epidemiology and Community Health. 2018;72(10):919-925. doi: https://doi.org/10.1136/jech-2018-210651
58. Vekic J, Zeljkovic A, Stefanovic A, Giglio RV, Ciaccio M, Rizzo M. Diabetes and Colorectal Cancer Risk: A New Look at Molecular Mechanisms and Potential Role of Novel Antidiabetic Agents. International Journal of Molecular Sciences. 2021;22(22):12409. doi: https://doi.org/10.3390/ijms222212409
59. Bronsveld HK, Jensen V, Vahl P, et al. Diabetes and Breast Cancer Subtypes. PLoS ONE. 2017;12(1). doi: https://doi.org/10.1371/journal.pone.0170084
60. Wang Y, Yan P, Tao F, et al. The association between gestational diabetes mellitus and cancer in women: A systematic review and meta-analysis of observational studies. Diabetes & Metabolism. Published online February 2020. doi: https://doi.org/10.1016/j.diabet.2020.02.003
61. McVicker L, Cardwell CR, Edge L, et al. Survival outcomes in endometrial cancer patients according to diabetes: a systematic review and meta-analysis. BMC Cancer. 2022;22(1). doi: https://doi.org/10.1186/s12885-022-09510-7
62. Han Q, Lin X, Zhang X, et al. WWC3 regulates the Wnt and Hippo pathways via Dishevelled proteins and large tumour suppressor 1, to suppress lung cancer invasion and metastasis. The Journal of Pathology. 2017;242(4):435-447. doi: https://doi.org/10.1002/path.4919
63. Borgquist S, Rosendahl AH, Czene K, et al. Long-term exposure to insulin and volumetric mammographic density: observational and genetic associations in the Karma study. Breast Cancer Research. 2018;20(1). doi: https://doi.org/10.1186/s13058-018-1026-7
64. Paul, Bazelier MT, Hubert, et al. Insulin glargine use and breast cancer risk: Associations with cumulative exposure. Acta oncologica. 2016;55(7):851-858. doi: https://doi.org/10.3109/0284186x.2016.1155736
65. But A, De Bruin ML, Bazelier MT, et al. Cancer risk among insulin users: comparing analogues with human insulin in the CARING f ive-country cohort study. Diabetologia. 2017;60(9):1691-1703. doi: https://doi.org/10.1007/s00125-017-4312-5
66. Mori Y, Ko E, Furrer R, et al. Effects of insulin and analogues on carcinogen-induced mammary tumours in high fat-fed rats. Endocrine connections. 2018;7(5):739-748. doi: https://doi.org/10.1530/ec-17-0358
67. Frantsiyants EM, Surikova EI, Kaplieva IV, et al. Diabetes mellitus and cancer: a system of insulin-like growth factors. Problemy endokrinologii. 2021;67(5):34-42. doi: https://doi.org/10.14341/probl12741
Supplementary files
Review
For citations:
Dvoryanchikov Ya.V., Deunezhewa S.M., Yatskov I.A., Beloglazov V.A. Overview of the prevalence and features of oncological diseases in type 2 diabetes and possible immunological mechanisms. Problems of Endocrinology. 2025;71(2):75-81. (In Russ.) https://doi.org/10.14341/probl13452

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).