Genetic profiling of parathyroid tumours: lifting the veil of mystery
https://doi.org/10.14341/probl13543
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrine disorder characterized by autonomous secretion of parathyroid hormone by altered parathyroid glands. In most cases PHPT is a sporadic disease, 5-10% of observations are genetically determined syndromal and non-syndromal forms. Studies of families with hereditary forms of PHPT have led to the discovery of key oncosuppressor genes and proto-oncogenes whose somatic mutations underlie the development of many sporadic parathyroid tumors. Another interest in the pathogenesis of primary hyperparathyroidism is studying mechanisms of epigenetic regulation in tumor tissue. In the first part of this review, we will discuss the classification, morphology, and etiology of PHPT. In the second part, we will present a summary of the most important studies using genetic analysis, classified according to the method used.
About the Authors
H. V. BagirovaRussian Federation
Hanum V. Bagirova
11 Dm.Ulyanova street, 117036 Moscow
Competing Interests:
Авторы декларируют отсутствие явных или потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
O. Yu. Spasskaya
Russian Federation
Olga Yu. Spasskaya
Moscow
Competing Interests:
Авторы декларируют отсутствие явных или потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
E. I. Kim
Russian Federation
Ekaterina I. Kim, MD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных или потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
A. A. Lavreniuk
Russian Federation
Anastasiia A. Lavreniuk, MD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных или потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
A. K. Eremkina
Russian Federation
Anna K. Eremkina, MD, PhD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных или потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
N. G. Mokrysheva
Russian Federation
Natalia G. Mokrysheva, MD, PhD, Professor
Moscow
Competing Interests:
Авторы декларируют отсутствие явных или потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
References
1. Mokrysheva NG, Eremkina AK, Elfimova AR, et al. The Russian registry of primary hyperparathyroidism, latest update. Front Endocrinol (Lausanne). 2023;14:1203437. doi: https://doi.org/10.3389/FENDO.2023.1203437/BIBTEX
2. Fraser WD. Hyperparathyroidism. The Lancet. 2009;374(9684):145-158. doi: https://doi.org/10.1016/S0140-6736(09)60507-9
3. Silverberg SJ. Primary Hyperparathyroidism. In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Wiley; 2013:543-552. doi: https://doi.org/10.1002/9781118453926.ch68
4. Mamedova E, Mokrysheva N, Vasilyev E, et al. Primary hyperparathyroidism in young patients in Russia: high frequency of hyperparathyroidism-jaw tumor syndrome. Endocr Connect. 2017;6(8):557-565. doi: https://doi.org/10.1530/EC-17-0126
5. Chandran M. Primary Hyperparathyroidism. Evidence-Based Endocrine Surgery. Published online 2018:217-233. doi: https://doi.org/10.1007/978-981-10-1124-5_18
6. Barakat MT, Ashrafian H, Todd JF, Meeran K, Williams GR. Severe hypercalcaemia from secretion of parathyroid hormone-related peptide. Lancet Oncol. 2004;5(10):633-635. doi: https://doi.org/10.1016/S1470-2045(04)01599-2
7. Pepe J, Cipriani C, Sonato C, Raimo O, Biamonte F, Minisola S. Cardiovascular manifestations of primary hyperparathyroidism: a narrative review. Eur J Endocrinol. 2017;177(6):R297-R308. doi: https://doi.org/10.1530/EJE-17-0485
8. Chai Y, Chae H, Kim K, et al. Comparative Gene Expression Profiles in Parathyroid Adenoma and Normal Parathyroid Tissue. J Clin Med. 2019;8(3):297. doi: https://doi.org/10.3390/jcm8030297
9. Newey PJ, Nesbit MA, Rimmer AJ, et al. Whole-Exome Sequencing Studies of Nonhereditary (Sporadic) Parathyroid Adenomas. J Clin Endocrinol Metab. 2012;97(10):E1995-E2005. doi: https://doi.org/10.1210/JC.2012-2303
10. Evangelista L. FDG-PET/CT and parathyroid carcinoma: Review of literature and illustrative case series. World J Clin Oncol. 2011;2(10):348. doi: https://doi.org/10.5306/wjco.v2.i10.348
11. Severskaya N V, Ilyin AA, Chebotareva I V, et al. Parathyroid carcinoma. The experience of treatment of 15 patients and a review. Opuholi Golovy i Sei. 2020;10(3):19-26. doi: https://doi.org/10.17650/2222-1468-2020-10-3-19-26
12. Erickson LA, Mete O, Juhlin CC, Perren A, Gill AJ. Overview of the 2022 WHO Classification of Parathyroid Tumors. Endocr Pathol. 2022;33(1):64-89. doi: https://doi.org/10.1007/S12022-022-09709-1
13. Venkatachala S, Kumar Sr, Premkumar S. Double adenoma of the parathyroid: Reinforcing the existence of this entity. Indian J Pathol Microbiol. 2013;56(3):328. doi: https://doi.org/10.4103/0377-4929.120420
14. Gunasekaran S, Wallace H, Snowden C, Mikl D, England RJA. Parathyroid ectopia: development of a surgical algorithm based on operative findings. J Laryngol Otol. 2015;129(11):1115-1120. doi: https://doi.org/10.1017/S0022215115002273
15. Cetani F, Marcocci C, Torregrossa L, Pardi E. Atypical parathyroid adenomas: challenging lesions in the differential diagnosis of endocrine tumors. Endocr Relat Cancer. 2019;26(7):R441-R464. doi: https://doi.org/10.1530/ERC-19-0135
16. Sandelin K, Tullgren O, Farnebo LO. Clinical course of metastatic parathyroid cancer. World J Surg. 1994;18(4):594-598. doi: https://doi.org/10.1007/BF00353773
17. Wassif WS, Moniz CF, Friedman E, et al. Familial isolated hyperparathyroidism: a distinct genetic entity with an increased risk of parathyroid cancer. J Clin Endocrinol Metab. 1993;77(6):1485-1489. doi: https://doi.org/10.1210/JCEM.77.6.7903311
18. Barczyński M, Bränström R, Dionigi G, Mihai R. Sporadic multiple parathyroid gland disease—a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbeck’s Archives of Surgery 2015 400:8. 2015;400(8):887-905. doi: https://doi.org/10.1007/S00423-015-1348-1
19. Baloch ZW, LiVolsi VA. Double Adenoma of the Parathyroid Gland. Arch Pathol Lab Med. 2001;125(2):178-179. doi: https://doi.org/10.5858/2001-125-0178-DAOTPG
20. DeLellis RA, Mangray S. Heritable forms of primary hyperparathyroidism: a current perspective. Histopathology. 2018;72(1):117-132. doi: https://doi.org/10.1111/HIS.13306
21. Brook I. Late side effects of radiation treatment for head and neck cancer. Radiat Oncol J. 2020;38(2):84-92. doi: https://doi.org/10.3857/ROJ.2020.00213
22. Imanishi Y, Hosokawa Y, Yoshimoto K, et al. Primary hyperparathyroidism caused by parathyroid-targeted overexpression of cyclin D1 in transgenic mice. J Clin Invest. 2001;107(9):1093-1102. doi: https://doi.org/10.1172/JCI10523
23. Bertolino P, Tong WM, Galendo D, Wang ZQ, Zhang CX. Heterozygous Men1 Mutant Mice Develop a Range of Endocrine Tumors Mimicking Multiple Endocrine Neoplasia Type 1. Molecular Endocrinology. 2003;17(9):1880-1892. doi: https://doi.org/10.1210/ME.2003-0154
24. Miedlich S, Krohn K, Lamesch P, Müller A, Paschke R. Frequency of somatic MEN1 gene mutations in monoclonal parathyroid tumours of patients with primary hyperparathyroidism. Eur J Endocrinol. 2000;143(1):47-54. doi: https://doi.org/10.1530/EJE.0.1430047
25. Heppner C, Kester MB, Agarwal SK, et al. Somatic mutation of the MEN1 gene in parathyroid tumours. Nat Genet. 1997;16(4):375-378. doi: https://doi.org/10.1038/NG0897-375
26. Chandrasekharappa SC, Guru SC, Manickam P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science. 1997;276(5311):404-406. doi: https://doi.org/10.1126/SCIENCE.276.5311.404
27. Iacobone M, Carnaille B, Palazzo FF, Vriens M. Hereditary hyperparathyroidism--a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbecks Arch Surg. 2015;400(8):867-886. doi: https://doi.org/10.1007/S00423-015-1342-7
28. Yi Y, Nowak NJ, Pacchia AL, Morrison C. Chromosome 11 genomic changes in parathyroid adenoma and hyperplasia: array CGH, FISH, and tissue microarrays. Genes Chromosomes Cancer. 2008;47(8):639-648. doi: https://doi.org/10.1002/GCC.20565
29. Mallya SM, Arnold A. Cyclin D1 in parathyroid disease. Front Biosci. 2000;5. doi: https://doi.org/10.2741/MALLYA
30. Marini F, Cianferotti L, Giusti F, Brandi ML. Molecular genetics in primary hyperparathyroidism: the role of genetic tests in differential diagnosis, disease prevention strategy, and therapeutic planning. A 2017 update. Clin Cases Miner Bone Metab. 2017;14(1):60-70. doi: https://doi.org/10.11138/CCMBM/2017.14.1.060
31. Newey PJ, Bowl MR, Cranston T, Thakker R V. Cell division cycle protein 73 homolog (CDC73) mutations in the hyperparathyroidism-jaw tumor syndrome (HPT-JT) and parathyroid tumors. Hum Mutat. 2010;31(3):295-307. doi: https://doi.org/10.1002/HUMU.21188
32. Marini F, Giusti F, Palmini G, Perigli G, Santoro R, Brandi ML. Genetics and Epigenetics of Parathyroid Carcinoma. Front Endocrinol (Lausanne). 2022;13:834362. doi: https://doi.org/10.3389/FENDO.2022.834362/BIBTEX
33. McCoy KL, Seethala RR, Armstrong MJ, et al. The clinical importance of parathyroid atypia: is long-term surveillance necessary? Surgery. 2015;158(4):929-936. doi: https://doi.org/10.1016/J.SURG.2015.06.022
34. Cardoso L, Stevenson M, Thakker R V. Molecular genetics of syndromic and non-syndromic forms of parathyroid carcinoma. Hum Mutat. 2017;38(12):1621-1648. doi: https://doi.org/10.1002/HUMU.23337
35. Knudson AG. Mutation and Cancer: Statistical Study of Retinoblastoma. Proceedings of the National Academy of Sciences. 1971;68(4):820-823. doi: https://doi.org/10.1073/pnas.68.4.820
36. Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258(5083):818-821. doi: https://doi.org/10.1126/SCIENCE.1359641
37. Agarwal SK, Schröck E, Kester MB, et al. Comparative Genomic Hybridization Analysis of Human Parathyroid Tumors. Cancer Genet Cytogenet. 1998;106(1):30-36. doi: https://doi.org/10.1016/S0165-4608(98)00049-1
38. Farnebo F, Kytölä S, Teh BT, et al. Alternative genetic pathways in parathyroid tumorigenesis. J Clin Endocrinol Metab. 1999;84(10):3775-3780. doi: https://doi.org/10.1210/JCEM.84.10.6057
39. Kytölä S, Farnebo F, Obara T, et al. Patterns of Chromosomal Imbalances in Parathyroid Carcinomas. Am J Pathol. 2000;157(2):579-586. doi: https://doi.org/10.1016/S0002-9440(10)64568-3
40. Dwight T, Nelson AE, Theodosopoulos G, et al. Independent genetic events associated with the development of multiple parathyroid tumors in patients with primary hyperparathyroidism. Am J Pathol. 2002;161(4):1299-1306. doi: https://doi.org/10.1016/S0002-9440(10)64406-9
41. Newey PJ, Nesbit MA, Rimmer AJ, et al. Whole-exome sequencing studies of nonhereditary (sporadic) parathyroid adenomas. J Clin Endocrinol Metab. 2012;97(10). doi: https://doi.org/10.1210/JC.2012-2303
42. Toska E, Osmanbeyoglu HU, Castel P, et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017;355(6331):1324-1330. doi: https://doi.org/10.1126/SCIENCE.AAH6893
43. Tao X, Xu T, Lin X, et al. Genomic Profiling Reveals the Variant Landscape of Sporadic Parathyroid Adenomas in Chinese Population. J Clin Endocrinol Metab. 2023;108(7):1768-1775. doi: https://doi.org/10.1210/CLINEM/DGAD002
44. Yu W, McPherson JR, Stevenson M, et al. Whole-exome sequencing studies of parathyroid carcinomas reveal novel PRUNE2 mutations, distinctive mutational spectra related to APOBEC-catalyzed DNA mutagenesis and mutational enrichment in kinases associated with cell migration and invasion. J Clin Endocrinol Metab. 2015;100(2):E360-E364. doi: https://doi.org/10.1210/JC.2014-3238
45. Fischer J, Palmedo G, Von Knobloch R, et al. Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours. Oncogene. 1998;17(6):733-739. doi: https://doi.org/10.1038/SJ.ONC.1201983
46. Pandya C, Uzilov A V, Bellizzi J, et al. Genomic profiling reveals mutational landscape in parathyroid carcinomas. JCI Insight. 2017;2(6). doi: https://doi.org/10.1172/JCI.INSIGHT.92061
47. Clarke CN, Katsonis P, Hsu TK, et al. Comprehensive Genomic Characterization of Parathyroid Cancer Identifies Novel Candidate Driver Mutations and Core Pathways. J Endocr Soc. 2019;3(3):544-559. doi: https://doi.org/10.1210/JS.2018-00043
48. Hu Y, Zhang X, Wang O, et al. The genomic profile of parathyroid carcinoma based on whole-genome sequencing. Int J Cancer. 2020;147(9):2446-2457. doi: https://doi.org/10.1002/IJC.33166
49. Kasaian K, Wiseman SM, Thiessen N, et al. Complete genomic landscape of a recurring sporadic parathyroid carcinoma. J Pathol. 2013;230(3):249-260. doi: https://doi.org/10.1002/PATH.4203
50. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489-501. doi: https://doi.org/10.1038/nrc839
51. Cieślik M, Chinnaiyan AM. Cancer transcriptome profiling at the juncture of clinical translation. Nat Rev Genet. 2018;19(2):93-109. doi: https://doi.org/10.1038/NRG.2017.96
52. Jo SY, Hong N, Lee S, et al. Genomic and transcriptomic profiling reveal molecular characteristics of parathyroid carcinoma. Exp Mol Med. 2023;55(5):886-897. doi: https://doi.org/10.1038/S12276-023-00968-4
53. Guo X, Long J, Chen Z, et al. Discovery of rare coding variants in OGDHL and BRCA2 in relation to breast cancer risk in Chinese women. Int J Cancer. 2020;146(8):2175-2181. doi: https://doi.org/10.1002/IJC.32825
54. Tan MJ, Teo Z, Sng MK, Zhu P, Tan NS. Emerging roles of angiopoietin-like 4 in human cancer. Mol Cancer Res. 2012;10(6):677-688. doi: https://doi.org/10.1158/1541-7786.MCR-11-0519
55. Lin ZR, Wang MY, He SY, Cai ZM, Huang WR. TACC3 transcriptionally upregulates E2F1 to promote cell growth and confer sensitivity to cisplatin in bladder cancer. Cell Death Dis. 2018;9(2). doi: https://doi.org/10.1038/S41419-017-0112-6
56. Daubon T, Léon C, Clarke K, et al. Deciphering the complex role of thrombospondin-1 in glioblastoma development. Nat Commun. 2019;10(1). doi: https://doi.org/10.1038/S41467-019-08480-Y
57. Haven CJ, Howell VM, Eilers PHC, et al. Gene expression of parathyroid tumors: Molecular subclassification and identification of the potential malignant phenotype. Cancer Res. 2004;64(20):7405-7411. doi: https://doi.org/10.1158/0008-5472.CAN-04-2063
58. Kim JM, Kim K, Punj V, et al. Linker histone H1.2 establishes chromatin compaction and gene silencing through recognition of H3K27me3. Sci Rep. 2015;5. doi: https://doi.org/10.1038/SREP16714
59. Forsberg L, Björck E, Hashemi J, et al. Distinction in gene expression profiles demonstrated in parathyroid adenomas by high-density oligoarray technology. Eur J Endocrinol. 2005;152(3):459-470. doi: https://doi.org/10.1530/EJE.1.01864
60. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA. A chromatin landmark and transcription initiation at most promoters in human cells. Cell. 2007;130(1):77-88. doi: https://doi.org/10.1016/J.CELL.2007.05.042
61. Chai YJ, Chae H, Kim K, et al. Comparative Gene Expression Profiles in Parathyroid Adenoma and Normal Parathyroid Tissue. Journal of Clinical Medicine. 2019;8(3):297. doi: https://doi.org/10.3390/JCM8030297
62. Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39(4):457-466. doi: https://doi.org/10.1038/NG1990
63. Sulaiman L, Juhlin CC, Nilsson IL, Fotouhi O, Larsson C, Hashemi J. Global and gene-specific promoter methylation analysis in primary hyperparathyroidism. Epigenetics. 2013;8(6):646-655. doi: https://doi.org/10.4161/EPI.24823
64. Starker LF, Svedlund J, Udelsman R, et al. The DNA methylome of benign and malignant parathyroid tumors. Genes Chromosomes Cancer. 2011;50(9):735-745. doi: https://doi.org/10.1002/gcc.20895
65. Bajekal N, Li TC. Fibroids, infertility and pregnancy wastage. Hum Reprod Update. 2000;6(6):614-620. doi: https://doi.org/10.1093/HUMUPD/6.6.614
66. Khalil H, Tazi M, Caution K, et al. Aging is associated with hypermethylation of autophagy genes in macrophages. Epigenetics. 2016;11(5):381-388. doi: https://doi.org/10.1080/15592294.2016.1144007
67. Björklund P, Åkerström G, Westin G. Accumulation of nonphosphorylated beta-catenin and c-myc in primary and uremic secondary hyperparathyroid tumors. J Clin Endocrinol Metab. 2007;92(1):338-344. doi: https://doi.org/10.1210/JC.2006-1197
68. Björklund P, Lindberg D, Åkerström G, Westin G. Stabilizing mutation of CTNNB1/beta-catenin and protein accumulation analyzed in a large series of parathyroid tumors of Swedish patients. Mol Cancer. 2008;7. doi: https://doi.org/10.1186/1476-4598-7-53
69. Westin G. Molecular genetics and epigenetics of nonfamilial (sporadic) parathyroid tumours. J Intern Med. 2016;280(6):551-558. doi: https://doi.org/10.1111/JOIM.12458
70. Juhlin CC, Kiss NB, Villablanca A, et al. Frequent Promoter Hypermethylation of the APC and RASSF1A Tumour Suppressors in Parathyroid Tumours. PLoS One. 2010;5(3):e9472. doi: https://doi.org/10.1371/journal.pone.0009472
71. Singh P, Bhadada SK, Arya AK, et al. Aberrant Epigenetic Alteration of PAX1 Expression Contributes to Parathyroid Tumorigenesis. J Clin Endocrinol Metab. 2022;107(2):e783-e792. doi: https://doi.org/10.1210/clinem/dgab626
72. Starker LF, Svedlund J, Udelsman R, et al. The DNA methylome of benign and malignant parathyroid tumors. Genes Chromosomes Cancer. 2011;50(9):735-745. doi: https://doi.org/10.1002/GCC.20895
73. Carling T, Du Y, Fang W, et al. Intragenic allelic loss and promoter hypermethylation of the RIZ1 tumor suppressor gene in parathyroid tumors and pheochromocytomas. Surgery. 2003;134(6):932-939. doi: https://doi.org/10.1016/S0039-6060(03)00422-7
Supplementary files
Review
For citations:
Bagirova H.V., Spasskaya O.Yu., Kim E.I., Lavreniuk A.A., Eremkina A.K., Mokrysheva N.G. Genetic profiling of parathyroid tumours: lifting the veil of mystery. Problems of Endocrinology. 2025;71(2):35-44. (In Russ.) https://doi.org/10.14341/probl13543

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).