Preview

Problems of Endocrinology

Advanced search

Vitamin D deficiency in overweight patients: current strategies and practical aspects

https://doi.org/10.14341/probl13557

Abstract

On September 27, 2024, a discussion-based working meeting on the issue of vitamin D deficiency in patients with overweight and obesity was held in Vladikavkaz.The meeting aimed to evaluate the relationship between vitamin D deficiency, overweight, and associated comorbidities, as well as to explore modern strategies and practical approaches for managing such patients in endocrinology practice. The resolution of the meeting was developed by its participants, comprising leading endocrinologists.

About the Authors

T. L. Karonova
Almazov National Medical Research Center; Pavlov First Saint Petersburg State Medical University
Russian Federation

Tatiana L. Karonova, PhD, Chief esearcher, Associate Professor

Saint Petersburg


Competing Interests:

Конфликт интересов отсутствует



V. V. Salukhov
Military Medical Academy named after S.M. Kirov
Russian Federation

Vladimir V. Salukhov, MD, PhD, Professor

Saint Petersburg


Competing Interests:

Конфликт интересов отсутствует



F. Kh. Dzgoeva
Endocrinology Research Centre
Russian Federation

Fatima Kh. Dzgoeva, MD, PhD

Moscow


Competing Interests:

Конфликт интересов отсутствует



E. A. Pigarova
Endocrinology Research Centre
Russian Federation

Ekaterina A. Pigarova, MD, PhD, DMedSc

Moscow


Competing Interests:

Конфликт интересов отсутствует



G. R. Galstyan
Endocrinology Research Centre
Russian Federation

Gagik R. Galstyan, MD, PhD, Professor

Moscow


Competing Interests:

Конфликт интересов отсутствует



S. V. Bulgakova
Samara State Medical University
Russian Federation

Svetlana V.Bulgakova

Samara


Competing Interests:

Конфликт интересов отсутствует



G. R. Vagapova
Kazan State Medical University
Russian Federation

Gulnar R. Vagapova, MD, PhD, Professor

Kazan


Competing Interests:

Конфликт интересов отсутствует



N. I. Volkova
Rostov State Medical University
Russian Federation

Natalya I. Volkova, MD, PhD, Professor

Rostov-on-Don


Competing Interests:

Конфликт интересов отсутствует



T. P. Kiseleva
Ural State Medical University
Russian Federation

Tatiana P. Kiseleva, MD, PhD, Professor

Yekaterinburg


Competing Interests:

Конфликт интересов отсутствует



T. N. Markova
Endocrinology Dispensary of the Moscow City Health Department; Russian University of Medicine
Russian Federation

Tatiana N. Markova

Moscow


Competing Interests:

Конфликт интересов отсутствует



O. V. Remizov
North Ossetian State Medical Academy

Oleg V. Remizov, MD, PhD, DMedSc

Vladikavkaz



L. A. Skakun
City Hospital No. 11; South Ural State Medical University
Russian Federation

Larisa A. Skakun

Chelyabinsk


Competing Interests:

Конфликт интересов отсутствует



V. L. Tul`ganova
Chelyabinsk Regional Clinical Hospital; South Ural State Medical University
Russian Federation

Valeria L. Tul`ganova, MD, PhD

Chelyabinsk


Competing Interests:

Конфликт интересов отсутствует



V. V. Yavlyanskaya
Kuban State Medical University; Regional Clinical Hospital No. 2

Valeria V. Yavlyanskaya

Krasnodar


Competing Interests:

Конфликт интересов отсутствует



References

1. Li M, Jiang S, Dong C, Jiang D. Association between fat-soluble vitamins and metabolic syndromes in US adults: a cross-section study from NHANES database. BMC Endocr Disord. 2024;24(1):178. doi: https://doi.org/10.1186/s12902-024-01711-4

2. Izzo M, Carrizzo A, Izzo C, et al. Vitamin D: not just bone metabolism but a key player in cardiovascular diseases. Life (Basel). 2021;11(5):452. doi: https://doi.org/10.3390/life11050452

3. Pigarova EA, Dzeranova LК, Yatsenko DA. Absorption and metabolism of vitamin D in health and in gastrointestinal tract diseases. Obesity and metabolism. 2022;19(1):123-133. (In Russ.).] doi: https://doi.org/10.14341/omet12835

4. Zhao S, Qian F, Wan Z, et al. Vitamin D and major chronic diseases. Trends Endocrinol Metab. 2024;35(12):1050-1061. doi: https://doi.org/10.1016/j.tem.2024.04.018

5. WHO. Fact Sheet: Obesity and Overweight. Geneva, Switzerland: World Health Organization; 2016. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

6. Raymond-Lezman JR, Riskin SI. Benefits and risks of sun exposure to maintain adequate vitamin D levels. Cureus. 2023;15(5):e38578. doi: https://doi.org/10.7759/cureus.38578

7. Wells JCK, Marphatia AA, Amable G, et al. The future of human malnutrition: rebalancing agency for better nutritional health. Global Health. 2021;17(1):119. doi: https://doi.org/10.1186/s12992-021-00767-4

8. Giustina A, di Filippo L, Allora A, et al. Vitamin D and malabsorptive gastrointestinal conditions: A bidirectional relationship? Rev Endocr Metab Disord. 2023;24(2):121-138. doi: https://doi.org/10.1007/s11154-023-09792-7

9. Shymanskyi I, Lisakovska O, Mazanova A, Veliky M. Vitamin D deficiency and diabetes mellitus. Available from: https://www.intechopen.com/chap-ters/69402 doi: https://doi.org/10.5772/intechopen.89543

10. Galușca D, Popoviciu MS, Babeș EE, et al. Vitamin D implications and effect of supplementation in endocrine disorders: autoimmune thyroid disorders (Hashimoto’s disease and Grave’s disease), diabetes mellitus and obesity. Medicina (Kaunas). 2022;58(2):194. doi: https://doi.org/10.3390/medicina58020194

11. Tang J, Shan S, Li F, Yun P. Effects of vitamin D supplementation on autoantibodies and thyroid function in patients with Hashimoto’s thyroiditis: A systematic review and metaanalysis. Medicine (Baltimore). 2023;102(52):e36759. doi: https://doi.org/10.1097/MD.0000000000036759

12. McCullough ML, Zoltick ES, Weinstein SJ, et al. Circulating vitamin D and colorectal cancer risk: an international pooling project of 17 cohorts. J Natl Cancer Inst. 2019;111(2):158-169. doi: https://doi.org/10.1093/jnci/djy087

13. Karonova TL, Shmonina IA, Andreeva AT, et al. Deficit vitamina D: prichina ili sledstvie ozhireniya? Consilium Medicum. 2016;18(4):49-52 (In Russ.).]

14. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019; 15: 288-298. doi: https://doi.org/10.1038/s41574-019-0176-8

15. Zhernakova YuV, Zheleznova EA, Chazova IE, i dr. Rasprostranennost’ abdominal’nogo ozhireniya v sub”ektah Rossijskoj Federacii i ego svyaz’ s social’no-ekonomicheskim statusom, rezul’taty epidemiologicheskogo issledovaniya ESSE-RF. Terapevticheskij arhiv. 2018;90(10):14-22 (In Russ.).] doi: https://doi.org/10.26442/terarkh201890104-22

16. Balanova YuA, Shalnova SA, Deev AD, et al. Obesity in russian population — prevalence and association with the non-communicable diseases risk factors. Russian Journal of Cardiology. 2018;(6):123-130. (In Russ.).] doi: https://doi.org/10.15829/1560-4071-2018-6-123-130

17. WHO – Obesity and overweight. Available from: https://who.int/news-room/fact-sheets/detail/obesity-and-overweight

18. Alferova VI, Mustafina SV. The prevalence of obesity in the adult population of the Russian Federation (literature review). Obesity and metabolism. 2022;19(1):96-105. (In Russ.).] doi: https://doi.org/10.14341/omet12809

19. Alzohily B, AlMenhali A, Gariballa S, et al. Unraveling the complex interplay between obesity and vitamin D metabolism. Sci Rep. 2024;14(1):7583. doi: https://doi.org/10.1038/s41598-024-58154-z

20. Pigarova EA, Povaliaeva AA, Dzeranova LK, Rozhinskaya LYa. The role of vitamin D in endocrine diseases. Laboratory Service. 2021;10(2):3446. (In Russ.).] doi: https://doi.org/10.17116/labs20211002134

21. Musella M, Berardi G, Vitiello A, et al. Vitamin D deficiency in patients with morbid obesity before and after metabolic bariatric surgery. Nutrients. 2022;14(16): 3319. doi: https://doi.org/10.3390/nu14163319

22. Cornejo-Pareja I, Clemente-Postigo M, Tinahones FJ. Metabolic and endocrine consequences of bariatric surgery. Front. Endocrinol. 2019;10:626. doi: https://doi.org/10.3389/fendo.2019.00626

23. Avdeeva VA, Suplotova LA, Rozhinskaya LY. Effects of bariatric surgery on bone metabolism: focusing on vitamin D. Obesity and metabolism. 2022;19(1):116-122. (In Russ.).] doi: https://doi.org/10.14341/omet12702

24. Hajhashemy Z, Shahdadian F, Ziaei R, Saneei P. Serum vitamin D levels in relation to abdominal obesity: A systematic review and dose-response meta-analysis of epidemiologic studies. Obes Rev. 2021;22(2):e13134. doi: https://doi.org/10.1111/obr.13134

25. Pereira M, Ribas de Farias Costa P, Miranda Pereira E, et al. Does vitamin D deficiency increase the risk of obesity in adults and the elderly? A systematic review of prospective cohort studies. Public Health. 2021;190:123-131. doi: https://doi.org/10.1016/j.puhe.2020.04.031

26. Rafiq S, Jeppesen PB. Body mass index, vitamin D, and type 2 diabetes: a systematic review and meta-analysis. Nutrients. 2018;10(9):1182. doi: https://doi.org/10.3390/nu10091182

27. Povaliaeva A.A., Pigarova E.A., Dzeranova L.K., Rozhinskaya L.Ya. The relationship of vitamin D status with the development and course of diabetes mellitus type 1. Obesity and metabolism. 2020;17(1):82-87. (In Russ.).] doi: https://doi.org/10.14341/omet12206

28. Skaaby T, Thuesen BH, Linneberg A. Vitamin D, cardiovascular disease and risk factors. in: ultraviolet light in human health, diseases and environment. Adv Exp Med Biol. 2017;996:221-230. doi: https://doi.org/10.1007/978-3-319-56017-5_18

29. Mirza I, Mohamed A, Deen H, et al. Obesity-associated vitamin D deficiency correlates with adipose tissue DNA hypomethylation, inflammation, and vascular dysfunction. Int J Mol Sci. 2022;23:14377. doi: https://doi.org/10.3390/ijms232214377

30. Nimitphong H, Guo W, Holick MF, Fried SK, Lee M. Vitamin D inhibits adipokine production and inflammatory signaling through the vitamin D receptor in human adipocytes. Obesity. 2021;29:562-568. doi: https://doi.org/10.1002/oby.23109

31. Matthews DG, D’angelo J, Drelich J, Welsh J. Adipose-specific VDR deletion alters body fat and enhances mammary epithelial density. J Steroid Biochem Mol Biol. 2016;164: 299-308. doi: https://doi.org/10.1016/j.jsbmb.2015.09.035

32. Mutt SJ, Hyppönen E, Saarnio J, Järvelin MR, Herzig KH. Vitamin D and adipose tissue-more than storage. Front Physiol. 2014;5:228. doi: https://doi.org/10.3389/fphys.2014.00228

33. Kong J, Li YC. Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab. 2006; 290: E916-Е924. doi: https://doi.org/10.1152/ajpendo.00410.2005

34. Narvaez CJ, Simmons KM, Brunton J, et al. Induction of STEAP4 correlates with 1,25-dihydroxyvitamin D3 stimulation of adipogenesis in mesenchymal progenitor cells derived from human adipose tissue. J Cell Physiol. 2013;228:2024-2036. doi: https://doi.org/10.1002/jcp.24371

35. Wimalawansa SJ. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J Steroid Biochem Mol Biol. 2018;175:177-189. doi: https://doi.org/10.1016/j.jsbmb.2016.09.017

36. Vijay GS, Ghonge S, Vajjala S, et al. Prevalence of vitamin D deficiency in type 2 diabetes mellitus patients: a cross-sectional study. Cureus. 2023;15(5):e38952. doi: https://doi.org/10.7759/cureus.38952

37. Contreras-Bolívar V, García-Fontana B, García-Fontana C, MuñozTorres M. Mechanisms involved in the relationship between vitamin D and insulin resistance: impact on clinical practice. Nutrients. 2021;13(10):3491. doi: https://doi.org/10.3390/nu13103491

38. Argano C, Mirarchi L, Amodeo S, et al. The role of Vitamin D and its molecular bases in insulin resistance, diabetes, metabolic syndrome, and cardiovascular disease: state of the art. Int. J. Mol. Sci. 2023;24(20):15485. doi: https://doi.org/10.3390/ijms242015485

39. Gorelova IV, Popova PV, Rulev MV. Vitamin D and reproductive health. Prob. Endocrinol. 2020;66(5):96-101. doi: https://doi.org/10.14341/probl12468

40. Dennis NA, Houghton LA, Jones GT, et al. The level of serum anti-Müllerian hormone correlates with vitamin D status in men and women but not in boys. J Clin Endocrinol Metab. 2012;97(7):2450-2455. doi: https://doi.org/10.1210/jc.2012-1213

41. Merhi ZO, Seifer DB, Weedon J, et al. Circulating vitamin D correlates with serum antimullerian hormone levels in late-reproductiveaged women: Women’s Interagency HIV Study. Fertil Steril. 2012;98(1):228-234. doi: https://doi.org/10.1016/j.fertnstert.2012.03.029

42. Karimi E, Arab A, Rafiee M, Amani R. A systematic review and meta-analysis of the association between vitamin D and ovarian reserve. Sci Rep. 2021;11(1):16005. doi: https://doi.org/10.1038/s41598-021-95481-x

43. Gromova OA, Torshin IYu, Dzhidzhihiya LK, Gogoleva IV. Roli vitamina D v profilaktike i lechenii zhenskogo besplodiya. Ginekologiya. 2016;18(3):34-39 (In Russ.).]

44. Yang M, Shen X, Lu D, Peng J, Zhou S, Xu L, Zhang J. Effects of vitamin D supplementation on ovulation and pregnancy in women with polycystic ovary syndrome: a systematic review and meta-analysis. Front. Endocrinol. 14:1148556. doi: https://doi.org/10.3389/fendo.2023.1148556

45. Drakopoulos P, van de Vijver A, Schutyser V, Milatovic S, Anckaert E, et al. The effect of serum vitamin D levels on ovarian reserve markers: a prospective cross-sectional study. Hum Reprod. 2017;32:(1):208-214. doi: https://doi.org/10.1093/humrep/dew304

46. Anagnostis P, Karras S, Goulis DG. Vitamin D in human reproduction: a narrative review. Int J Clin Pract. 2013;67(3):225-235. doi: https://doi.org/10.1111/ijcp.12031

47. Adamczewska D, Słowikowska-Hilczer J, Walczak-Jędrzejowska R. The association between vitamin D and the components of male fertility: a systematic review. Biomedicines. 2022;11(1):90. doi: https://doi.org/10.3390/biomedicines11010090

48. Lempesis IG, Georgakopoulou VE. Implications of obesity and adiposopathy on respiratory infections; focus on emerging challenges. World J Clin Cases. 2023;11(13):2925-2933. doi: https://doi.org/10.12998/wjcc.v11.i13.2925

49. Gorelov AV, Malyavin AG, Babak SL, et al. Expert Consensus Statement. Role of vitamin D in the prevention of acute respiratory infections. Infekc. bolezni (Infectious Diseases). 2023;21(1):162–170. (In Russian).] doi: https://doi.org/10.20953/1729-9225-2023-1-162-170

50. Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770. doi: https://doi.org/10.1126/science.1123933

51. Agier J, Efenberger M, Brzezińska-Błaszczyk E. Cathelicidin impact on inflammatory cells. Cent Eur J Immunol. 2015;40(2):225-235. doi: https://doi.org/10.5114/ceji.2015.51359

52. Barlow PG, Svoboda P, Mackellar A, et al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One. 2011;6(10):e25333. doi: https://doi.org/10.1371/journal.pone.0025333

53. Cantorna MT, Snyder L, Lin YD, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015;7(4):3011-3021. doi: https://doi.org/10.3390/nu7043011

54. Suplotova LA, Avdeeva VA, Pigarova EA, et al. The first Russian multicenter non-interventional registry study to study the incidence of vitamin D deficiency and insufficiency in Russian Federation. Terapevticheskii arkhiv. 2021;93(10):1209-1216 (In Russian).] doi: https://doi.org/10.26442/00403660.2021.10.201071

55. Pham H, Rahman A, Majidi A, Waterhouse M, Neale RE. Acute respiratory tract infection and 25-hydroxyvitamin D concentration: a systematic review and meta-analysis. Int J Environ Res Public Health. 2019;16(17):3020. doi: https://doi.org/10.3390/ijerph16173020

56. Berry D, Hesketh K, Power C, Hyppönen E. Vitamin D status has a linear association with seasonal infections and lung function in British adults. British J Nutrition. 2011;106(9):1433-1440. doi: https://doi.org/10.1017/S0007114511001991

57. Karonova TL, Kudryavtsev IV, Golovatyuk KA, et al. Vitamin D status and immune response in hospitalized patients with moderate and severe COVID-19. Pharmaceuticals (Basel). 2022;15(3):305. doi: https://doi.org/10.3390/ph15030305

58. Karonova TL, Golovatyuk KA, Kudryavtsev IV, et al. Effect of cholecalciferol supplementation on the clinical features and inflammatory markers in hospitalized COVID-19 patients: a randomized, open-label, single-center study. Nutrients. 2022;14(13):2602. doi: https://doi.org/10.3390/nu14132602

59. Karonova TL, Mikhaylova AA, Golovatyuk KA, et al. Vitamin D metabolism parameters and cytokine profile in COVID-19 patients with bolus cholecalciferol supplementation. Diagnostics (Basel). 2024;14(13):1408. doi: https://doi.org/10.3390/diagnostics14131408

60. Dedov II, Mel’nichenko GA, Mokrysheva NG, et al. Draft federal clinical practice guidelines for the diagnosis, treatment, and prevention of vitamin D deficiency. Osteoporosis and Bone Diseases. 2021;24(4):4-26. (In Russ.).] doi: https://doi.org/10.14341/osteo12937

61. Afzal S, Bojesen SE, Nordestgaard BG. Low 25-Hydroxyvitamin D and Risk of Type 2 Diabetes: A Prospective Cohort Study and Metaanalysis. Clin Chem. 2013;59:381-391. doi: https://doi.org/10.1373/clinchem.2012.193003

62. Lotfi-Dizaji L, Mahboob S, Aliashrafi S, et al. Effect of vitamin D supplementation along with weight loss diet on meta-inflammation and fat mass in obese subjects with vitamin D deficiency: A doubleblind placebo-controlled randomized clinical trial. Clin Endocrinol. 2019;90:94-101. doi: https://doi.org/10.1111/cen.13861

63. Данные сайта ГРЛС. Доступно по: https://grls.rosminzdrav.ru/Default.aspx

64. Helde Frankling M, Norlin AC, Hansen S, et al. Are vitamin D3 tablets and oil drops equally effective in raising S-25-hydroxyvitamin D concentrations? A post-hoc analysis of an observational study on immunodeficient patients. Nutrients. 2020;12(5):1230. doi: https://doi.org/10.3390/nu12051230


Review

For citations:


Karonova T.L., Salukhov V.V., Dzgoeva F.Kh., Pigarova E.A., Galstyan G.R., Bulgakova S.V., Vagapova G.R., Volkova N.I., Kiseleva T.P., Markova T.N., Remizov O.V., Skakun L.A., Tul`ganova V.L., Yavlyanskaya V.V. Vitamin D deficiency in overweight patients: current strategies and practical aspects. Problems of Endocrinology. 2025;71(1):92-98. (In Russ.) https://doi.org/10.14341/probl13557

Views: 1021


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)