Immunometabolic disorders in type 2 diabetes mellitus mediated by NLRP3 inflammasome activation and methods of pharmacological correction thereof
https://doi.org/10.14341/probl13590
Abstract
According to recent studies, chronic systemic inflammation mediated by activation of the inflammasome NOD-like receptor protein 3 (NLRP3) is a key factor in the pathophysiology of type 2 diabetes mellitus (DM). The main features of the activation of signalling cascades and regulatory mechanisms of the NLRP3 inflammasome in type 2 DM are related to the fact that glucose, saturated fatty acids, lipotoxic ceramides, oxidised LDL and cholesterol act as the main molecular patterns associated with damage, activating the inflammasome and triggering a cascade of signalling mechanisms leading to the production of IL-1β and pro-inflammatory cytokines. A number of antidiabetic drugs not only effectively control glucose levels, but also correct immunometabolic disorders associated with NLRP3 inflammasome activation. Given the role of interleukin-1β (IL-1β) in the inflammation associated with type 2 DM, anti-IL-1 therapies such as anakinra, canakinumab and gevokizumab are being investigated in both experimental models of DM and clinical trials. However, the use of this group is limited by the increased risk of infection. Among the inhibitors of NLRP3 inflammasome activation, MCC950, OLT1177, CY-09 are the most studied, but none of the compounds in this group are currently used in clinical practice. The aim of this review is to assess the role of the NLRP3 inflammasome in the pathogenesis of type 2 diabetes, as well as the potential of inflammasome pathway inhibitors as promising therapeutic agents.
About the Authors
N. I. CheplyaevaРоссия
Natalia I. Cheplyaeva, PhD in medicine
400066, Volgograd, 1, Pavshikh Bortsov Sq., Volgograd
Д. A. Babkov
Россия
Denis A. Babkov, doctor of pharmacy
Volgograd
A. V. Lukyanov
Россия
Andrey V. Lukyanov, graduate student
Volgograd
R. D. Danilov
Россия
Roman D. Danilov, graduate student
Volgograd
A. A. Spasov
Россия
Alexander A. Spasov, doctor of medicine
Volgograd
References
1. International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, Belgium; 2021 [cited 04.03.2025]. Available from: https://www.diabetesatlas.org
2. Yao J, Sterling K, Wang Z et al The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther. 2024;9(1):10. doi: https://doi.org/10.1038/s41392-023-01687-y
3. Zhang X, Wang Z, Zheng Y et al Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases (Review). Int J Mol Med. 2023;51(4):35. doi: https://doi.org/10.3892/ijmm.2023.5238
4. Wang L, Hauenstein AV. The NLRP3 inflammasome: Mechanism of action, role in disease and therapies. Mol Aspects Med. 2020;76:100889. doi: https://doi.org/10.1016/j.mam.2020
5. Cescato M, Zhu YYJ, Le Corre L et al Implication of the LRR Domain in the Regulation and Activation of the NLRP3 Inflammasome. Cells. 2024;13(16):1365. doi: https://doi.org/10.3390/cells13161365
6. Ma Q. Pharmacological Inhibition of the NLRP3 Inflammasome: Structure, Molecular Activation, and Inhibitor-NLRP3 Interaction. Pharmacol Rev. 2023;75(3):487-520. doi: https://doi.org/10.1124/pharmrev.122.000629
7. Fu J, Schroder K, Wu H. Mechanistic insights from inflammasome structures. Nat Rev Immunol. 2024;24(7):518-535. doi: https://doi.org/10.1038/s41577-024-00995-w
8. Fernandes-Alnemri T, Kang S, Anderson C et al Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J Immunol. 2013;191(8):3995-9. doi: https://doi.org/10.4049/jimmunol.1301681
9. Paik S, Kim JK, Silwal P et al An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021;18(5):1141-1160. doi: https://doi.org/10.1038/s41423-021-00670-3
10. Xu J, Núñez G. The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci. 2023;48(4):331-344. doi: https://doi.org/10.1016/j.tibs.2022.10.002
11. Qin Y, Zhao W. Posttranslational modifications of NLRP3 and their regulatory roles in inflammasome activation. Eur J Immunol. 2023;53(10):e2350382. doi: https://doi.org/10.1002/eji.202350382
12. Koumangoye R. The role of Cl- and K+ efflux in NLRP3 inflammasome and innate immune response activation. Am J Physiol Cell Physiol. 2022;322(4):C645-C652. doi: https://doi.org/10.1152/ajpcell.00421.2021
13. Sharma AK, Ismail N. Non-Canonical Inflammasome Pathway: The Role of Cell Death and Inflammation in Ehrlichiosis. Cells. 2023;12(22):2597. doi: https://doi.org/10.3390/cells12222597
14. Orning P, Lien E, Fitzgerald KA. Gasdermins and their role in immunity and inflammation. J Exp Med. 2019;216(11):2453-2465. doi: https://doi.org/10.1084/jem.20190545
15. Kalmykovа ZA, Kononenko IV, Smirnova OM, Shestakova MV. Signaling pathways of β-cell death in type 2 diabetes mellitus: the role of innate immunity. Diabetes mellitus. 2020;23(2):174-184. (In Russ.). doi: https://doi.org/10.14341/DM10242
16. Lu S, Li Y, Qian Z et al Role of the inflammasome in insulin resistance and type 2 diabetes mellitus. Front Immunol. 2023;14:1052756. doi: https://doi.org/10.3389/fimmu.2023.1052756
17. Ding S, Xu S, Ma Y et al Modulatory Mechanisms of the NLRP3 Inflammasomes in Diabetes. Biomolecules. 2019;9(12):850. doi: https://doi.org/10.3390/biom9120850
18. Nițulescu IM, Ciulei G, Cozma A et al From Innate Immunity to Metabolic Disorder: A Review of the NLRP3 Inflammasome in Diabetes Mellitus. J Clin Med. 2023;12(18):6022. doi: https://doi.org/10.3390/jcm12186022
19. Li X, Xiao GY, Guo T et al Potential therapeutic role of pyroptosis mediated by the NLRP3 inflammasome in type 2 diabetes and its complications. Front Endocrinol (Lausanne). 2022;13:986565. doi: https://doi.org/10.3389/fendo.2022.986565
20. Wu KK, Cheung SW, Cheng KK. NLRP3 Inflammasome Activation in Adipose Tissues and Its Implications on Metabolic Diseases. Int J Mol Sci. 2020;21(11):4184. doi: https://doi.org/10.3390/ijms21114184
21. Dror E, Dalmas E, Meier DT et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol. 2017;18(3):283-292. doi: https://doi.org/10.1038/ni.3659
22. Lee JY, Kang Y, Kim HJ et al. Acute Glucose Shift Induces the Activation of the NLRP3 Inflammasome in THP-1 Cells. Int J Mol Sci. 2021;22(18):9952. doi: https://doi.org/10.3390/ijms22189952
23. Borowiec AM, Właszczuk A, Olakowska E et al TXNIP inhibition in the treatment of diabetes. Verapamil as a novel therapeutic modality in diabetic patients. Med Pharm Rep. 2022;95(3):243-250. doi: https://doi.org/10.15386/mpr-2187
24. Morikawa S, Kaneko N, Okumura C et al. J. IAPP/amylin deposition, which is correlated with expressions of ASC and IL-1β in β-cells of Langerhans’ islets, directly initiates NLRP3 inflammasome activation. Int J Immunopathol Pharmacol. 2018;32:2058738418788749. doi: https://doi.org/10.1177/2058738418788749
25. Esser N, L’homme L, De Roover A et al. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia. 2013;56(11):2487-97. doi: https://doi.org/10.1007/s00125-013-3023-9
26. Theofilis P, Sagris M, Oikonomou E et al. The Anti-Inflammatory Effect of Novel Antidiabetic Agents. Life (Basel). 2022;12(11):1829. doi: https://doi.org/10.3390/life12111829
27. Hill JR, Coll RC, Sue N et al. Sulfonylureas as Concomitant Insulin Secretagogues and NLRP3 Inflammasome Inhibitors. ChemMedChem. 2017;12(17):1449-1457. doi: https://doi.org/10.1002/cmdc.201700270
28. Lamkanfi M, Mueller JL, Vitari AC et al Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol. 2009;187(1):61-70. doi: https://doi.org/10.1083/jcb.200903124
29. Dwivedi DK, Jena GB. NLRP3 inhibitor glibenclamide attenuates high-fat diet and streptozotocin-induced non-alcoholic fatty liver disease in rat: studies on oxidative stress, inflammation, DNA damage and insulin signalling pathway. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(4):705-716. doi: https://doi.org/10.1007/s00210-019-01773-5
30. Mkrtumyan AM, Markova TN, Ovchinnikova MA, Ivanova IA, Kuzmenko KV. Metformin as an activator of AMP-activated protein kinase. Known and new mechanisms of action. Diabetes mellitus. 2023;26(6):585-595. (In Russ.). doi: https://doi.org/10.14341/DM13044
31. Zhang J, Huang L, Shi X et al Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging (Albany NY). 2020;12(23):24270-24287. doi: https://doi.org/10.18632/aging.202143
32. Yang F, Qin Y, Wang Y et al Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent Effects in Diabetic Cardiomyopathy. Int J Biol Sci. 2019;15(5):1010-1019. doi: https://doi.org/10.7150/ijbs.29680
33. Rai RC, Bagul PK, Banerjee SK. NLRP3 inflammasome drives inflammation in high fructose fed diabetic rat liver: Effect of resveratrol and metformin. Life Sci. 2020;253:117727. doi: https://doi.org/10.1016/j.lfs.2020.117727
34. Yang CC, Wu CH, Lin TC et al Inhibitory effect of PPARγ on NLRP3 inflammasome activation. Theranostics. 2021;11(5):2424-2441. doi: https://doi.org/10.7150/thno.46873
35. Kounatidis D, Vallianou N, Evangelopoulos A et al SGLT-2 Inhibitors and the Inflammasome: What’s Next in the 21st Century? Nutrients. 2023;15(10):2294. doi: https://doi.org/10.3390/nu15102294
36. Benetti E, Mastrocola R, Vitarelli G et al. Empagliflozin Protects against Diet-Induced NLRP-3 Inflammasome Activation and Lipid Accumulation. J Pharmacol Exp Ther. 2016;359(1):45-53. doi: https://doi.org/10.1124/jpet.116.235069
37. Liu P, Zhang Z, Wang J et al Empagliflozin protects diabetic pancreatic tissue from damage by inhibiting the activation of the NLRP3/caspase-1/GSDMD pathway in pancreatic β cells: in vitro and in vivo studies. Bioengineered. 2021;12(2):9356-9366. doi: https://doi.org/10.1080/21655979.2021.2001240
38. Ye Y, Bajaj M, Yang HC et al SGLT-2 Inhibition with Dapagliflozin Reduces the Activation of the Nlrp3/ASC Inflammasome and Attenuates the Development of Diabetic Cardiomyopathy in Mice with Type 2 Diabetes. Further Augmentation of the Effects with Saxagliptin, a DPP4 Inhibitor. Cardiovasc Drugs Ther. 2017;31(2):119-132. doi: https://doi.org/10.1007/s10557-017-6725-2
39. Birnbaum Y, Bajaj M, Yang HC et al Combined SGLT2 and DPP4 Inhibition Reduces the Activation of the Nlrp3/ASC Inflammasome and Attenuates the Development of Diabetic Nephropathy in Mice with Type 2 Diabetes. Cardiovasc Drugs Ther. 2018;32(2):135-145. doi: https://doi.org/10.1007/s10557-018-6778-x
40. Chen H, Tran D, Yang HC et al Dapagliflozin and Ticagrelor Have Additive Effects on the Attenuation of the Activation of the NLRP3 Inflammasome and the Progression of Diabetic Cardiomyopathy: an AMPK-mTOR Interplay. Cardiovasc Drugs Ther. 2020;34(4):443-461. doi: https://doi.org/10.1007/s10557-020-06978-y
41. Zhu W, Feng PP, He K et al Liraglutide protects non-alcoholic fatty liver disease via inhibiting NLRP3 inflammasome activation in a mouse model induced by high-fat diet. Biochem Biophys Res Commun. 2018;505(2):523-529. doi: https://doi.org/10.1016/j.bbrc.2018.09.134
42. Chen J, Mei A, Wei Y et al GLP-1 receptor agonist as a modulator of innate immunity. Front Immunol. 2022;13:997578. doi: https://doi.org/10.3389/fimmu.2022.997578
43. Song S, Guo R, Mehmood A et al Liraglutide attenuate central nervous inflammation and demyelination through AMPK and pyroptosis-related NLRP3 pathway. CNS Neurosci Ther. 2022;28(3):422-434. doi: https://doi.org/10.1111/cns.13791
44. Birnbaum Y, Bajaj M, Qian J et al Dipeptidyl peptidase-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome. BMJ Open Diabetes Res Care. 2016;4(1):e000227. doi: https://doi.org/10.1136/bmjdrc-2016-000227
45. Li XX, Ling SK, Hu MY et al Protective effects of acarbose against vascular endothelial dysfunction through inhibiting Nox4/NLRP3 inflammasome pathway in diabetic rats. Free Radic Biol Med. 2019;145:175-186. doi: https://doi.org/10.1016/j.freeradbiomed.2019.09.015
46. Meier DT, de Paula Souza J, Donath MY. Targeting the NLRP3 inflammasome-IL-1β pathway in type 2 diabetes and obesity. Diabetologia. 2025;68(1):3-16. doi: https://doi.org/10.1007/s00125-024-06306-1
47. Velikova TV, Kabakchieva PP, Assyov YS et al Targeting Inflammatory Cytokines to Improve Type 2 Diabetes Control. Biomed Res Int. 202113;2021:7297419. doi: https://doi.org/10.1155/2021/7297419
48. Kataria Y, Ellervik C, Mandrup-Poulsen T. Treatment of type 2 diabetes by targeting interleukin-1: a meta-analysis of 2921 patients. Semin Immunopathol. 2019;41(4):413-425. doi: https://doi.org/10.1007/s00281-019-00743-6
49. Coll RC, Robertson AA, Chae JJ et al A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21(3):248-55. doi: https://doi.org/10.1038/nm.3806
50. Hull C, Dekeryte R, Buchanan H et al NLRP3 inflammasome inhibition with MCC950 improves insulin sensitivity and inflammation in a mouse model of frontotemporal dementia. Neuropharmacology. 2020;180:108305. doi: https://doi.org/10.1016/j.neuropharm.2020.108305
51. Zhai Y, Meng X, Ye T et al Inhibiting the NLRP3 Inflammasome Activation with MCC950 Ameliorates Diabetic Encephalopathy in db/db Mice. Molecules. 2018;23(3):522. doi: https://doi.org/10.3390/molecules23030522
52. Zhang Y, Lv X, Hu Zet al Protection of Mcc950 against high-glucose-induced human retinal endothelial cell dysfunction. Cell Death Dis. 2017;8(7):e2941. doi: https://doi.org/10.1038/cddis.2017.308
53. Østergaard JA, Jha JC, Sharma A et al Adverse renal effects of NLRP3 inflammasome inhibition by MCC950 in an interventional model of diabetic kidney disease. Clin Sci (Lond). 2022;136(2):167-180. doi: https://doi.org/10.1042/CS20210865
54. Zhang C, Zhu X, Li L et al A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation. Diabetes Metab Syndr Obes. 2019;12:1297-1309. doi: https://doi.org/10.2147/DMSO.S199802
55. Marchetti C, Swartzwelter B, Gamboni F et al OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci USA. 2018;115(7):E1530-E1539. doi: https://doi.org/10.1073/pnas.1716095115
56. Klück V, Jansen TLTA, Janssen M et al Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: an open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol. 2020;2(5):e270-e280. doi: https://doi.org/10.1016/s2665-9913(20)30065-5. Epub 2020 Apr 8. Erratum in: Lancet Rheumatol. 2020;2(6):e321. doi: https://doi.org/10.1016/S2665-9913(20)30135-1
57. Juliana C, Fernandes-Alnemri T, Wu J et al Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem. 2010;285(13):9792-9802. doi: https://doi.org/10.1074/jbc.M109.082305
58. Hu JJ, Liu X, Zhao J, et al. Identification of pyroptosis inhibitors that target a reactive cysteine in gasdermin D. bioRxiv; 2018. doi: https://doi.org/10.1101/365908
59. Chiazza F, Couturier-Maillard A, Benetti E et al Targeting the NLRP3 Inflammasome to Reduce Diet-Induced Metabolic Abnormalities in Mice. Mol Med. 2016;21(1):1025-1037. doi: https://doi.org/10.2119/molmed.2015.00104
60. Kumar A, Negi G, Sharma SS. Suppression of NF-κB and NF-κB regulated oxidative stress and neuroinflammation by BAY 11-7082 (IκB phosphorylation inhibitor) in experimental diabetic neuropathy. Biochimie. 2012;94(5):1158-65. doi: https://doi.org/10.1016/j.biochi.2012.01.023
61. Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, Wang A, Tao J, Wang C, Liu Q, Jin T, Jiang W, Deng X, Zhou R. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 2017 Nov 6;214(11):3219-3238. doi: https://doi.org/10.1084/jem.20171419
62. Dapueto R, Rodriguez-Duarte J, Galliussi G et al A novel nitroalkene vitamin E analogue inhibits the NLRP3 inflammasome and protects against inflammation and glucose intolerance triggered by obesity. Redox Biol. 2021;39:101833. doi: https://doi.org/10.1016/j.redox.2020.101833
Supplementary files
Review
For citations:
Cheplyaeva N.I., Babkov Д.A., Lukyanov A.V., Danilov R.D., Spasov A.A. Immunometabolic disorders in type 2 diabetes mellitus mediated by NLRP3 inflammasome activation and methods of pharmacological correction thereof. Problems of Endocrinology. 2025;71(6):76-86. (In Russ.) https://doi.org/10.14341/probl13590
JATS XML
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).




































.jpg)

