Нейроэндокринная регуляция репродуктивной системы: интеграция исследований нейропептидов и экспериментальной патофизиологии аменореи различного генеза (обзор литературы)
https://doi.org/10.14341/probl13641
Abstract
Нейроэндокринная регуляция репродуктивной функции представляет собой сложную систему, основанную на интеграции сигналов между центральной нервной системой и периферическими органами. Особое внимание в последние годы уделяется роли нейропептидов (кисспептин, нейротрофический фактор мозга (BDNF) и орексины), в патогенезе заболеваний, сопровождающихся нарушениями менструального цикла. В обзоре подробно рассматриваются молекулярные механизмы нейропептидной регуляции при функциональной гипоталамической аменорее (ФГА), преждевременной недостаточности яичников (ПНЯ) и синдроме поликистозных яичников (СПЯ).
Представлены данные исследований последних лет с использованием экспериментальных моделей, включающие стресс-индуцированные формы стойкого отсутствия эстрального цикла у лабораторных животных, а также имитации патологий СПЯ и ПНЯ, основанные на диетических и фармакологических воздействиях, соответственно. Дополнительно подробно рассмотрены и изучены публикации, демонстрирующие значимую роль нарушений нейропептидной передачи в патогенезе репродуктивных расстройств у женщин.
Интеграция фундаментальных исследований с клинической практикой не только способствует более глубокому пониманию патофизиологии аменореи, но и открывает широкие перспективы для разработки новых терапевтических подходов, таких как использование агонистов кисспептина или других препаратов, направленных на восстановление репродуктивной функции у женщин с различными формами менструальных дисфункций.
About the Authors
Юлия ЕвсееваRussian Federation
Юлия Абсатарова
Russian Federation
Елена Андреева
Russian Federation
Виталий Иоутси
Russian Federation
Сергей Румянцев
Russian Federation
Екатерина Шереметьева
Russian Federation
Ольга Григорян
Russian Federation
Галина Мельниченко
Russian Federation
References
1. https://rosstat.gov.ru/free_doc/new_site/RPN22/reports.html
2. Российское общество акушеров-гинекологов. Клинические рекомендации. Аменорея. — М.: Министерство здравоохранения РФ; 2021. [Rossijskoe obshhestvo akusherov-ginekologov. Klinicheskie rekomendacii. Amenoreja. Moscow: Ministerstvo zdravoohranenija RF; 2021. (In Russ.)].
3. Koysombat K, Tsoutsouki J, Patel AH, et al. Kisspeptin and neurokinin B: roles in reproductive health. Physiological reviews. 2025;105(2):707-764. doi:10.1152/physrev.00015.2024
4. de Roux N, Genin E, Carel JC, et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(19):10972-10976. doi:10.1073/pnas.1834399100
5. Roberts RE, Farahani L, Webber L, Jayasena C. Current understanding of hypothalamic amenorrhoea. Therapeutic advances in endocrinology and metabolism. 2020;11:2042018820945854. doi:10.1177/2042018820945854
6. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nature reviews. Endocrinology. 2018;14(5):270-284. doi:10.1038/nrendo.2018.24
7. Li M, Zhu Y, Wei J, et al. The global prevalence of premature ovarian insufficiency: a systematic review and meta-analysis. Climacteric.2023;26(2):95-102. doi:10.1080/13697137.2022.2153033
8. Patel AH, Koysombat K, Pierret A, et al. Kisspeptin in functional hypothalamic amenorrhea: Pathophysiology and therapeutic potential. Annals of the New York Academy of Sciences. 2024;1540(1):21-46. doi:10.1111/nyas.15220
9. Chakravarthi VP, Khristi V, Ghosh S, et al. ESR2 is essential for gonadotropin-induced Kiss1 expression in granulosa cells. Endocrinology. 2018;159:3860–73. doi: 10.1210/en.2018-00608
10. Chakravarthi VP, Ghosh S, Housami SM, et al. ERβ regulated ovarian kisspeptin plays an important role in oocyte maturation. Molecular and cellular endocrinology. 2021;527:111208. doi: 10.1016/j.mce.2021.111208
11. Ruohonen ST, Poutanen M, Tena-Sempere M. Role of kisspeptins in the control of the hypothalamic-pituitary-ovarian axis: old dogmas and new challenges. Fertility and sterility. 2020; 114:465–74. doi: 10.1016/j.fertnstert.2020.06.038
12. Циркин В.И., Трухина С.И., Трухин А.Н. Окситоцин: синтез, выделение, метаболизм и регуляция этих процессов (обзор). // Журнал медико-биологических исследований. - 2018. - Т.6. - №3 - С.270–283. [Tsirkin VI, Trukhina SI, Trukhin A.N. Oksitotsin: sintez, vydelenie, metabolizm i regulyatsiya etikh protsessov (obzor) // Zhurnal mediko-biologicheskikh issledovanii. 2018;6(3):270-283. (in Russ.)] doi: 10.17238/ issn2542-1298.2018.6.3.270
13. Matsui H, Asami T. Effects and therapeutic potentials of kisspeptin analogs: regulation of the hypothalamic-pituitary-gonadal axis. Neuroendocrinology. 2014;99(1):49-60. doi:10.1159/000357809
14. Kotanidou S, Nikolettos N, Kritsotaki N, et al. Kisspeptins Regulating Fertility: Potential Future Therapeutic Approach in Infertility Treatment. Journal of clinical medicine. 2025;14(10):3284. doi:10.3390/jcm14103284
15. Абсатарова Ю.С., Евсеева Ю.С., Андреева Е.Н., и др. Трудности дифференциальной диагностики функциональной гипоталамической аменореи и синдрома поликистозных яичников: систематический обзор. // Проблемы Эндокринологии. 2025. – Т.71. - №1 – С.83-91. [Absatarova Yu.S., Evseeva Yu.S., Andreeva E.N., et al. Difficulties of differential diagnosis of functional hypothalamic amenorrhea and polycystic ovary syndrome: a systematic review. Problems of Endocrinology. 2025;71(1):83-91. (In Russ.)] doi:10.14341/probl13529
16. Podfigurna, A., Szeliga, A., & Meczekalski, B. Serum kisspeptin and corticotropin‐releasing hormone levels in patients with functional hypothalamic amenorrhea. Gynecological and Reproductive Endocrinology and Metabolism. 2020; 1(1), 37–42. doi: 10.53260/grem.201017
17. Podfigurna A, Maciejewska-Jeske M, Meczekalski B, Genazzani AD. Kisspeptin and LH pulsatility in patients with functional hypothalamic amenorrhea. Endocrine. 2020;70(3):635–643. doi:10.1007/s12020-020-02481-4
18. Szeliga A, Podfigurna A, Bala G, Meczekalski B. Decreased neurokinin B as a risk factor of functional hypothalamic amenorrhea. Gynecological endocrinology: the official journal of the International Society of Gynecological Endocrinology. 2023;39(1):2216313. doi:10.1080/09513590.2023.2216313
19. Ozawa H. Kisspeptin neurons as an integration center of reproductive regulation: Observation of reproductive function based on a new concept of reproductive regulatory nervous system. Reproductive medicine and biology. 2021;21(1):e12419. doi:10.1002/rmb2.12419
20. Yang JA, Song CI, Hughes JK, et al. Acute Psychosocial Stress Inhibits LH Pulsatility and Kiss1 Neuronal Activation in Female Mice. Endocrinology. 2017;158(11):3716-3723. doi:10.1210/en.2017-00301
21. Kinsey-Jones JS, Li XF, Knox AM, et al. Down-regulation of hypothalamic kisspeptin and its receptor, Kiss1r, mRNA expression is associated with stress-induced suppression of luteinising hormone secretion in the female rat. Journal of neuroendocrinology. 2009;21(1):20-29. doi:10.1111/j.1365-2826.2008.01807.x
22. Abdelkareem AO, Alotaibi FT, AlKusayer GM, et al. Immunoreactivity of Kisspeptin and Kisspeptin Receptor in Eutopic and Ectopic Endometrial Tissue of Women With and Without Endometriosis. Reproductive sciences (Thousand Oaks, Calif.). 2020;27(9):1731-1741. doi:10.1007/s43032-020-00167-w
23. Abdelkareem AO, Gebril SM, AbdelHafez FF, et al. Kisspeptin and kisspeptin receptor immunoreactivity in euploid and aneuploid choriodecidual tissues of recurrent pregnancy losses. F&S science. 2023;4(1):56-64. doi:10.1016/j.xfss.2022.10.002
24. Szeliga A, Rudnicka E, Maciejewska-Jeske M, et al. Neuroendocrine Determinants of Polycystic Ovary Syndrome. International journal of environmental research and public health. 2022;19(5):3089. doi:10.3390/ijerph19053089
25. Witchel SF, Tena-Sempere M. The Kiss1 system and polycystic ovary syndrome: lessons from physiology and putative pathophysiologic implications. Fertility and sterility. 2013;100(1):12-22. doi:10.1016/j.fertnstert.2013.05.024
26. Varikasuvu SR, Prasad VS, Vamshika VC, et al. Circulatory metastin/kisspeptin-1 in polycystic ovary syndrome: a systematic review and meta-analysis with diagnostic test accuracy. Reproductive biomedicine online. 2019;39(4):685-697. doi:10.1016/j.rbmo.2019.04.018
27. Akad M, Socolov R, Furnică C, et al. Kisspeptin Variations in Patients with Polycystic Ovary Syndrome-A Prospective Case Control Study. Medicina (Kaunas, Lithuania). 2022;58(6):776. doi:10.3390/medicina58060776
28. Ruohonen ST, Gaytan F, Usseglio Gaudi A, et al. Selective loss of kisspeptin signaling in oocytes causes progressive premature ovulatory failure. Human reproduction (Oxford, England). 2022;37(4):806-821. doi:10.1093/humrep/deab287
29. Mattson MP, Duan W, Wan R, Guo Z. Prophylactic activation of neuroprotective stress response pathways by dietary and behavioral manipulations. NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics. 2004;1(1):111-116. doi:10.1602/neurorx.1.1.111
30. Wang X, Sun Z, Zhen J, Yu Q. Brain-derived neurotrophic factor from follicular fluid is positively associated with rate of mature ooocytes collected and cleavage rate in intracytoplasmic sperm injection patients. Journal of assisted reproduction and genetics. 2011;28(11):1053-1058. doi:10.1007/s10815-011-9635-4
31. Harel S, Jin S, Fisch B, et al. Tyrosine kinase B receptor and its activated neurotrophins in ovaries from human fetuses and adults. Molecular human reproduction. 2006;12(6):357-365. doi:10.1093/molehr/gal033.
32. Li C, Sui C, Wang W, et al. Baicalin Attenuates Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury by Modulating the BDNF-TrkB/PI3K/Akt and MAPK/Erk1/2 Signaling Axes in Neuron-Astrocyte Cocultures. Frontiers in pharmacology. 2021;12:599543. doi:10.3389/fphar.2021.599543
33. Qin X, Zhao Y, Zhang T, et al. TrkB agonist antibody ameliorates fertility deficits in aged and cyclophosphamide-induced premature ovarian failure model mice. Nature communications. 2022;13(1):914. doi:10.1038/s41467-022-28611-2
34. Podfigurna-Stopa A, Casarosa E, Luisi M, et al. Decreased plasma concentrations of brain-derived neurotrophic factor (BDNF) in patients with functional hypothalamic amenorrhea [published correction appears in Gynecol Endocrinol. 2014 Jan;30(1):82]. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology. 2013;29(9):817-820. doi:10.3109/09513590.2013.813472;
35. Begliuomini S, Casarosa E, Pluchino N, et al. Influence of endogenous and exogenous sex hormones on plasma brain-derived neurotrophic factor. Human reproduction (Oxford, England). 2007;22(4):995-1002. doi:10.1093/humrep/del479
36. Drakopoulos P, Casarosa E, Bucci F, et al. Diurnal Variation of Plasma Brain-Derived Neurotrophic Factor Levels in Women with Functional Hypothalamic Amenorrhea. Neuroendocrinology. 2015;101(3):256-262. doi:10.1159/000381456
37. Zhou J, Li C, Mi X, et al. BDNF secreted by mesenchymal stem cells improves aged oocyte quality and development potential by activating the ERK1/2 pathway. Cell communication and signaling: CCS. 2025;23(1):150. doi:10.1186/s12964-025-02137-8
38. Sha QQ, Dai XX, Dang Y, et al. A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes. Development (Cambridge, England). 2017;144(3):452-463. doi:10.1242/dev.144410
39. Kodomari I, Wada E, Nakamura S, Wada K. Maternal supply of BDNF to mouse fetal brain through the placenta. Neurochemistry international. 2009;54(2):95-98. doi:10.1016/j.neuint.2008.11.005
40. Liu B, Liu Y, Li S, at al. Depletion of placental brain-derived neurotrophic factor (BDNF) is attributed to premature ovarian insufficiency (POI) in mice offspring. Journal of ovarian research. 2024;17(1):141. doi:10.1186/s13048-024-01467-4
41. Czyzyk A, Filipowicz D, Podfigurna A, et al. Brain-derived neurotrophic factor (BDNF) plasma concentration in patients diagnosed with premature ovarian insufficiency (POI). Gynecological endocrinology: the official journal of the International Society of Gynecological Endocrinology. 2017;33(5):413-417. doi:10.1080/09513590.2017.1290073
42. Nakabayashi M, Suzuki T, Takahashi K, et al. Orexin-A expression in human peripheral tissues. Molecular and cellular endocrinology. 2003;205(1-2):43-50. doi:10.1016/s0303-7207(03)00206-5
43. Yilmaz E, Celik O, Celik N, et al. Serum orexin-A (OXA) level decreases in polycystic ovarian syndrome. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology. 2013;29(4):388-390. doi:10.3109/09513590.2012.754874
44. Абсатарова Ю.С., Евсеева Ю.С., Андреева Е.Н. Нейроэндокринные особенности патогенеза синдрома поликистозных яичников (обзор литературы). // Проблемы эндокринологии. — 2023. — Т.69. — №5. — С.107-114. [Absatarova Yu.S., Evseeva Yu.S., Andreeva E.N. Neuroendocrine features of the pathogenesis of polycystic ovary syndrome (literature review). Problems of Endocrinology. 2023;69(5):107-114. (In Russ.)] doi:10.14341/probl13350
45. Safdar M, Liang A, Rajput SA, et al. Orexin-A Regulates Follicular Growth, Proliferation, Cell Cycle and Apoptosis in Mouse Primary Granulosa Cells via the AKT/ERK Signaling Pathway. Molecules (Basel, Switzerland). 2021;26(18):5635. doi:10.3390/molecules26185635
46. Kim MR, Tilly JL. Current concepts in Bcl-2 family member regulation of female germ cell development and survival. Biochimica et biophysica acta. 2004;1644(2-3):205-210. doi:10.1016/j.bbamcr.2003.10.012
47. Paulini F, Melo EO. The role of oocyte-secreted factors GDF9 and BMP15 in follicular development and oogenesis. Reproduction in domestic animals = Zuchthygiene. 2011;46(2):354-361. doi:10.1111/j.1439-0531.2010.01739.x
48. Gaytan F, Garcia-Galiano D, Dorfman MD, et al. Kisspeptin receptor haplo-insufficiency causes premature ovarian failure despite preserved gonadotropin secretion [published correction appears in Endocrinology. 2015 Sep;156(9):3402. doi: 10.1210/en.2015-1591.]. Endocrinology. 2014;155(8):3088-3097. doi:10.1210/en.2014-1110
49. Velasco I, Franssen D, Daza-Dueñas S, et al. Dissecting the KNDy hypothesis: KNDy neuron-derived kisspeptins are dispensable for puberty but essential for preserved female fertility and gonadotropin pulsatility. Metabolism. 2023;144:155556. doi:10.1016/j.metabol.2023.155556
50. Ahmed AI, Dowidar MF, Negm AF, et al. Bone marrow mesenchymal stem cells expressing Neat-1, Hotair-1, miR-21, miR-644, and miR-144 subsided cyclophosphamide-induced ovarian insufficiency by remodeling the IGF-1-kisspeptin system, ovarian apoptosis, and angiogenesis. Journal of ovarian research. 2024 Sep 12;17(1):184. doi: 10.1186/s13048-024-01498-x. Erratum in: J Ovarian Res. 2024 Nov 29;17(1):239. doi: 10.1186/s13048-024-01564-4.
51. Гусев Д.В., Кузнецов С.Ю., Иванец Т.Ю., Чернуха Г.Е. Дифференциальная диагностика различных форм функциональной гипоталамической аменореи. // Гинекология. 2019. – Т.21. - №4 – С.14–18. [Gusev DV, Kuznetsov SY, Ivanets TY, Chernukha GE. Differential diagnosis of various forms of functional hypothalamic amenorrhea. Gynecology. 2019;21(4):14–18. (In Russ.)] doi:10.26442/20795696.2019.3.190525
52. Frintrop L, Trinh S, Liesbrock J, et al. Establishment of a chronic activity-based anorexia rat model. Journal of neuroscience methods. 2018;293:191-198. doi:10.1016/j.jneumeth.2017.09.018
53. Osuka S, Nakanishi N, Murase T, et al. Animal models of polycystic ovary syndrome: A review of hormone-induced rodent models focused on hypothalamus-pituitary-ovary axis and neuropeptides. Reproductive medicine and biology. 2018;18(2):151-160. doi:10.1002/rmb2.12262
54. Zhang H, Yi M, Zhang Y, et al. High-fat diets exaggerate endocrine and metabolic phenotypes in a rat model of DHEA-induced PCOS. Reproduction. 2016;151(4):431–441. doi: 10.1530/REP-15-0542.
55. Wang MX, Yin Q, Xu X. A Rat Model of Polycystic Ovary Syndrome with Insulin Resistance Induced by Letrozole Combined with High Fat Diet. Medical science monitor : international medical journal of experimental and clinical research. 2020;26:e922136. doi:10.12659/MSM.922136
56. Ryu Y, Kim SW, Kim YY, Ku SY. Animal models for human polycystic ovary syndrome (PCOS) focused on the use of indirect hormonal perturbations: a review of the literature. International journal of molecular sciences. 2019;20(11):2720–2720. doi: 10.3390/ijms20112720.
57. Wu S, Divall S, Nwaopara A, et al. Obesity-induced infertility and hyperandrogenism are corrected by deletion of the insulin receptor in the ovarian theca cell. Diabetes. 2014;63(4):1270–1282. doi: 10.2337/db13-1514.
58. Mirseyyed SF, Zavareh S, Nasiri M, Hashemi-Moghaddam H. An Experimental Study on The Oxidative Status and Inflammatory Levels of A Rat Model of Polycystic Ovary Syndrome Induced by Letrozole and A New High-Fat Diet. International journal of fertility & sterility. 2023;18(1):45-53. doi:10.22074/ijfs.2023.1972296.1391
59. Li D, Jia Y, Hou Y, et al. Qilin Pill Exerts Therapeutic Effect on Resection-Induced Premature Ovarian Insufficiency Rats by Inhibiting the MAPK and PI3K-AKT Signaling Pathways. Drug design, development and therapy. 2021;15:3331-3345. doi:10.2147/DDDT.S321010
60. Lu G, Li HX, Song ZW, et al. Combination of bone marrow mesenchymal stem cells and moxibustion restores cyclophosphamide-induced premature ovarian insufficiency by improving mitochondrial function and regulating mitophagy. Stem cell research & therapy. 2024;15(1):102. doi:10.1186/s13287-024-03709-0
Supplementary files
Review
For citations:
, , , , , , , . Problems of Endocrinology. 2025;71(5). (In Russ.) https://doi.org/10.14341/probl13641
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).




































.jpg)

