Features of bioenergetic metabolism in physiological and pathological conditions: focus on oncogenesis
https://doi.org/10.14341/probl13648
Abstract
The basis of the vital activity of each cell of the body is energy metabolism, necessary for the implementation of physiological needs in norm and pathology. The most important pathways for the synthesis of adenosine triphosphate are glycolysis, the tricarboxylic acid cycle and oxidative phosphorylation. Glucose, free fatty acids and amino acids can be used as a substrate for obtaining energy. As the disease develops, reprogramming occurs in cells with the ability to switch between energy pathways and the choice of its sources, forming a specific metabolic phenotype that ensures cell survival and the formation of clinical characteristics of the disease. The availability of information on pathophysiological changes at the level of cell metabolism is of scientific and practical interest in relation to the development of methods for accurate diagnosis and the choice of personalized tactics in each specific case. This review describes the characteristics of energy metabolism in normal and tumor cells. It also provides information on modern methods for assessing energy metabolism in the body.
About the Authors
A. S. ZhdanovaРоссия
Anastasiia S. Zhdanova, PhD student
117036, Moscow, Dmitria Uljanova street, 11
Zh. E. Belaya
Россия
Zhanna E. Belaya, MD, PhD
Moscow
G. A. Melnichenko
Россия
Galina A. Melnichenko, MD, PhD, acad.
Moscow
References
1. Liu H, Wang S, Wang J, et al. Energy metabolism in health and diseases. Signal Transduct Target Ther. 2025;10(1):69. doi: https://doi.org/10.1038/s41392-025-02141-x
2. Lakhani A, Kang DH, Kang YE, et al. Toward Systems-Level Metabolic Analysis in Endocrine Disorders and Cancer. Endocrinol Metab (Seoul). 2023;38(6):619-630. doi: https://doi.org/10.3803/EnM.2023.1814
3. Sautchuk R Jr, Eliseev RA. Cell energy metabolism and bone formation. Bone Rep. 2022; 27(16):101594. doi: https://doi.org/10.1016/j.bonr.2022.101594
4. Da W, Tao L, Zhu Y. The Role of Osteoclast Energy Metabolism in the Occurrence and Development of Osteoporosis. Front Endocrinol (Lausanne). 2021;12:675385. doi: https://doi.org/10.3389/fendo.2021.675385
5. Pouysségur J, Marchiq I, Parks SK, et al. ‘Warburg effect’ controls tumor growth, bacterial, viral infections and immunity - Genetic deconstruction and therapeutic perspectives. Semin Cancer Biol. 2022;86(2):334-346. doi: https://doi.org/10.1016/j.semcancer.2022.07.004
6. Hu C, Chen L, Ding Y, et al. Metabolic changes in neuroendocrine neoplasms. Cell Mol Life Sci. 2025;82(1):205. doi: https://doi.org/10.1007/s00018-025-05656-2
7. Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016;23(1):27-47. doi: https://doi.org/10.1016/j.cmet.2015.12.006
8. Lukina MM, Shirmanova MV, Sergeeva TF, et al. Metabolical imaging for the study of oncological processes (review). Sovremennye tehnologii v medicine. 2016;8(4):113–121 (In Russ.) doi: https://doi.org/10.17691/stm2016.8.4.16
9. Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: Still emerging. Cell Metab. 2022;34(3):355-377. doi: https://doi.org/10.1016/j.cmet.2022.01.007
10. Liu Y, Gu R, Gao M, et al. Emerging role of substance and energy metabolism associated with neuroendocrine regulation in tumor cells. Front Endocrinol (Lausanne). 2023;14:1126271. doi: https://doi.org/10.3389/fendo.2023.1126271
11. Zhang H, Tang S. Metabolic reprogramming and cancer precision medicine: a narrative review. Precis Cancer Med. 2021;4:35. doi: https://doi.org/10.21037/pcm-21-27
12. Wang Z, Liu F, Fan N, et al. Targeting Glutaminolysis: New Perspectives to Understand Cancer Development and Novel Strategies for Potential Target Therapies. Front. Oncol. 2020;10:589508. doi: https://doi.org/10.3389/fonc.2020.589508
13. Feng T, Hou P, Mu S, et al. Identification of cholesterol metabolism-related subtypes in nonfunctioning pituitary neuroendocrine tumors and analysis of immune infiltration. Lipids Health Dis. 2023;22(1):127. doi: https://doi.org/10.1186/s12944-023-01883-3
14. Kulikov VA, Belyaeva LE. Cancer cell metabolism as a therapeutic target. Vestnik VGMU. 2016;15(6):7-20 (In Russ.). doi: https://doi.org/10.22263/2312-4156.2016.6.7
15. Hu C, Chen L, Ding Y, et al. Metabolic changes in neuroendocrine neoplasms. Cell. Mol. Life Sci. 2025;82:205. doi: https://https://doi.org/10.1007/s00018-025-05656-2
16. Menshikov KV, Sultanbaev AV, Musin ShI, et al. Neuroendocrine Tumours: a Literature Review. Creative surgery and oncology. 2021;11(2):174-182. (In Russ.) doi: https://doi.org/10.24060/2076-3093-2021-11-2-174-182
17. Artamonova EV, Beltsevich DG, Bokhyan VYu, et al. Clinical guidelines «Neuroendocrine Tumors». 2020;1-52 (In Russ.)
18. Kuzminov AE, Gorbunova VA. Neuroendocrine Tumors: General Characteristics and Management Strategies. // Farmateka. 2018;12:66-71 (In Russ.). doi: https://doi.org/10.18565/pharmateca.2018.12.66-71
19. Deroose CM, Hindié E, Kebebew E, et al. Molecular Imaging of Gastroenteropancreatic Neuroendocrine Tumors: Current Status and Future Directions. J Nucl Med. 2016 ;57(12):1949-1956. doi: https://doi.org/10.2967/jnumed.116.179234
20. Gronskaia SA, Belaya ZhE, Melnichenko GA. FGF23 tumor induced osteomalacia. Problems of Endocrinology. 2022;68(5):56-66. (In Russ.) doi: https://doi.org/10.14341/probl13130
21. Golounina OO, Belaya ZE, Rozhinskaya Lya ey al. Clinical and laboratory characteristics and results of treatment of patients with ACTH-producing neuroendocrine tumors of various localization. Terapevticheskii Arkhiv. 2021;93 (10):1171–1178 (In Russ.) doi: https://doi.org/10.26442/00403660.2021.10.201102
22. Minn H, Kauhanen S, Seppänen M, et al. 18F-FDOPA: a multiple-target molecule. J Nucl Med. 2009;50(12):1915-8. doi: https://doi.org/10.2967/jnumed.109.065664
23. Montravers F, Kerrou K, Nataf V et al. Impact of fluorodihydroxyphenylalanine-18F positron emission tomography on management of adult patients with documented or occult digestive endocrine tumors. J Clin Endocrinol Metab. 2009;94(4):1295-301. doi: https://doi.org/10.1210/jc.2008-1349
24. Koopmans KP, de Vries EG, Kema IP et al. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol. 2006;7(9):728-34. doi: https://doi.org/10.1016/S1470-2045(06)70801-4
25. Panagiotidis E, Alshammari A, Michopoulou S, et al. Comparison of the Impact of 68Ga-DOTATATE and 18F-FDG PET/CT on Clinical Management in Patients with Neuroendocrine Tumors. J Nucl Med. 2017;58(1):91-96. doi: https://doi.org/10.2967/jnumed.116.178095
26. Abgral R, Leboulleux S, Déandreis D, et al. Performance of (18)fluorodeoxyglucose-positron emission tomography and somatostatin receptor scintigraphy for high Ki67 (≥10%) well-differentiated endocrine carcinoma staging. J Clin Endocrinol Metab. 2011;96(3):665-71. doi: https://doi.org/10.1210/jc.2010-2022
27. Long NM, Smith CS. Causes and imaging features of false positives and false negatives on 18F-PET/CT in oncologic imaging. Insights Imaging. 2011;2:679–698. doi: https://doi.org/10.1007/s13244-010-0062-3
28. Imperiale A, Poncet G, Addeo P, et al. Metabolomics of Small Intestine Neuroendocrine Tumors and Related Hepatic Metastases. Metabolites. 2019;11;9(12):300. doi: https://doi.org/10.3390/metabo9120300
29. Beger RD, Dunn W, Schmidt MA, et al. A White Paper, Community Perspective. Metabolomics. 2016;12(10):149. doi: https://doi.org/10.1007/s11306-016-1094-6
30. Kinross JM, Drymousis P, Jiménez B, et al. Metabonomic profiling: a novel approach in neuroendocrine neoplasias. Surgery. 2013;154(6):1185-92. doi: https://doi.org/10.1016/j.surg.2013.06.018
31. La Salvia A, Lens-Pardo A, López-López A, et al. Metabolomic profile of neuroendocrine tumors identifies methionine, porphyrin, and tryptophan metabolisms as key dysregulated pathways associated with patient survival. Eur J Endocrinol. 2024;190(1):62-74. doi: https://doi.org/10.1093/ejendo/lvad160
32. Fiehn O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr Protoc Mol Biol. 2016;114:30.4.1-30.4.32. doi: https://doi.org/10.1002/0471142727.mb3004s114
33. Li X, Zhang Y, Xu L et al. Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease. Cell Metab. 2023;35(1):200-211. doi: https://doi.org/10.1016/j.cmet.2022.10.002
34. Bayode MT, Alabi MA, Ibisanmi TA, et al. Isothermal calorimetry calscreener in the metabolism gauge of human malignant neoplastic cells: a burgeoning nexus in cancer biochemical metrology and diagnostics. Bull Natl Res Cent. 2023;47(120). doi: https://doi.org/10.1186/s42269-023-01097-8
Supplementary files
Review
For citations:
Zhdanova A.S., Belaya Zh.E., Melnichenko G.A. Features of bioenergetic metabolism in physiological and pathological conditions: focus on oncogenesis. Problems of Endocrinology. 2025;71(6):56-66. (In Russ.) https://doi.org/10.14341/probl13648
JATS XML
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).




































.jpg)

