Continuous glucose monitoring technologies: state of the art and future perspectives in view of artificial pancreas
https://doi.org/10.14341/probl201561454-72
Abstract
Continuous glucose monitoring (CGM) - a relatively new and rapidly developing technology of optimization glycemic control in patients with diabetes. The efficiency of the use of CGM for improving glycemic level in many clinical situations (asymptomatic hypoglycemia, high blood glucose variability, etc.). In the long term, CGM treated as a mandatory component of the «artificial pancreas» - an insulin pump with a closed-loop control infusion of insulin depending on the concentration of glucose in the blood. However, the modern technology such as CGM could not be used, as a data source to control closed-loop insulin pump (artificial pancreas), because of the significant limitations and lack of precision. In further development of technologies CGM, obviously, will address three main objectives: increased service life of sensors for the detection of glucose, improving the accuracy of measurement results and ease of use for patients. This article describes the main technological solutions of modern devices for CGM and promising directions for further developments in this field, their potential advantages and disadvantages, including in the light of the prospects for further integrating them into an «artificial pancreas».
About the Authors
Yury Vladimirovich TarasovRussian Federation
Researcher assistance
Competing Interests: no
Yury Ivanovich Philippov
Russian Federation
MD, Researcher assistance, Diabetes institute
Competing Interests: no
Ekaterina Andreevna Borisova
Russian Federation
Competing Interests: no
Elena Anatolievna Fedorova
Russian Federation
MD, Researcher assistance, Diabetes institute
Competing Interests: no
Alexander Yurievich Mayorov
Russian Federation
MD, PhD, Head of the Programm education and therapy department, Diabetes institute
Competing Interests: no
Marina Vladimirovna Shestakova
Russian Federation
MD, PhD, Professor, Diractor of the Diabetes institute in Endocrinology Research Centre, Head of the Diabetology and Endocrinology chair of the Pediatric department in Sechenov First Moscow State Medical University, academician of Russian Academy of Sciences
Competing Interests: no
References
1. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977-986. doi: 10.1056/nejm199309303291401.
2. American Diabetes Association. Standards of Medical Care in Diabetes—2015. Chapter 6: Glycemic Targets. Diabetes Care. 2014;38(Supplement_1):S33-S40. doi: 10.2337/dc15-S009.
3. Dedov II, Shestakova MV, Galstyan GR, et al. Standards of specialized diabetes care. Edited by Dedov I.I., Shestakova M.V. (7th edition). Diabetes mellitus. 2015;18(1S):1. doi: 10.14341/dm20151s1-112.
4. Reach G, Wilson GS. Can continuous glucose monitoring be used for the treatment of diabetes. Anal Chem. 1992;64(6):381a-386a.
5. Philippov YI. Continuous monitoring of blood glucose in the practice of endocrinologist. Obesity and Metabolism. 2012(4):15-22. doi: 10.14341/2071-8713-5124.
6. Newman JD, Turner AP. Home blood glucose biosensors: a commercial perspective. Biosens. Bioelectron. 2005;20(12):2435-2453. doi: 10.1016/j.bios.2004.11.012.
7. Vaddiraju S, Tomazos I, Burgess DJ, et al. Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectron. 2010;25(7):1553-1565. doi: 10.1016/j.bios.2009.12.001.
8. Renard E. Implantable continuous glucose sensors. Current diabetes reviews. 2008;4(3):169-174. doi: 10.2174/157339908785294406.
9. Garg S, Zisser H, Schwartz S, et al. Improvement in glycemic excursions with a transcutaneous, real-time continuous glucose sensor: a randomized controlled trial. Diabetes Care. 2006;29(1):44-50. doi: 10.2337/diacare.29.01.06.dc05-1686.
10. Liao KC, Hogen-Esch T, Richmond FJ, et al. Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo. Biosens. Bioelectron. 2008;23(10):1458-1465. doi: 10.1016/j.bios.2008.01.012.
11. Rhee SY, Chon S, Koh G, et al. Clinical experience of an iontophoresis based glucose measuring system. J. Korean Med. Sci. 2007;22(1):70-73. Pmc2693572.
12. Park EJ, Werner J, Beebe J, et al. Noninvasive ultrasonic glucose sensing with large pigs (approximately 200 pounds) using a lightweight cymbal transducer array and biosensors. J Diabetes Sci Technol. 2009;3(3):517-523. doi: 10.1177/193229680900300316.
13. Oliver NS, Toumazou C, Cass AE, Johnston DG. Glucose sensors: a review of current and emerging technology. Diabet. Med. 2009;26(3):197-210. doi: 10.1111/j.1464-5491.2008.02642.x.
14. Robert JJ. Continuous monitoring of blood glucose. Horm Res. 2002;57 Suppl 1:81-84. doi: 53321.
15. Caduff A, Talary MS, Mueller M, et al. Non-invasive glucose monitoring in patients with Type 1 diabetes: a Multisensor system combining sensors for dielectric and optical characterisation of skin. Biosens. Bioelectron. 2009;24(9):2778-2784. doi: 10.1016/j.bios.2009.02.001.
16. Joshi PP, Merchant SA, Wang Y, Schmidtke DW. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal. Chem. 2005;77(10):3183-3188. doi: 10.1021/ac0484169.
17. Vaddiraju S, Burgess DJ, Tomazos I, et al. Technologies for Continuous Glucose Monitoring: Current Problems and Future Promises. J Diabetes Sci Technol. 2010;4(6):1540-1562. doi: 10.1177/193229681000400632.
18. Yamazaki T, Kojima K, Sode K. Extended-range glucose sensor employing engineered glucose dehydrogenases. Anal. Chem. 2000;72(19):4689-4693.
19. Yuan JH, Wang K, Xia XH. Highly Ordered Platinum-Nanotubule Arrays for Amperometric Glucose Sensing. Adv. Funct. Mater. 2005;15(5):803-809. doi: 10.1002/adfm.200400321.
20. Wang J, Thomas DF, Chen A. Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal. Chem. 2008;80(4):997-1004. doi: 10.1021/ac701790z.
21. Tura A, Maran A, Pacini G. Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria. Diabetes Res. Clin. Pract. 2007;77(1):16-40. doi: 10.1016/j.diabres.2006.10.027.
22. Pickup JC, Hussain F, Evans ND, et al. Fluorescence-based glucose sensors. Biosens. Bioelectron. 2005;20(12):2555-2565. doi: 10.1016/j.bios.2004.10.002.
23. Moschou EA, Sharma BV, Deo SK, Daunert S. Fluorescence glucose detection: advances toward the ideal in vivo biosensor. J Fluoresc. 2004;14(5):535-547.
24. Barone PW, Parker RS, Strano MS. In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages. Anal. Chem. 2005;77(23):7556-7562. doi: 10.1021/ac0511997.
25. Barone PW, Strano MS. Reversible control of carbon nanotube aggregation for a glucose affinity sensor. Angew. Chem. Int. Ed. Engl. 2006;45(48):8138-8141. doi: 10.1002/anie.200603138.
26. Domschke A, March WF, Kabilan S, Lowe C. Initial clinical testing of a holographic non-invasive contact lens glucose sensor. Diabetes Technol. Ther. 2006;8(1):89-93. doi: 10.1089/dia.2006.8.89.
27. Gabbay RA, Sivarajah S. Optical coherence tomography-based continuous noninvasive glucose monitoring in patients with diabetes. Diabetes Technol Ther. 2008;10(3):188-193. doi: 10.1089/dia.2007.0277.
28. Rawer R, Stork W, Muller-Glaser KD. Polarimetric methods for measurement of intra ocular glucose concentration. Biomed. Tech. (Berl.). 2002;47 Suppl 1 Pt 1:186-188. doi: 10.1515/bmte.2002.47.s1a.186.
29. Harman-Boehm I, Gal A, Raykhman AM, et al. Noninvasive glucose monitoring: increasing accuracy by combination of multi-technology and multi-sensors. J Diabetes Sci Technol. 2010;4(3):583-595. doi: 10.1177/193229681000400312.
30. Sieg A, Guy RH, Delgado-Charro MB. Noninvasive and minimally invasive methods for transdermal glucose monitoring. Diabetes Technol. Ther. 2005;7(1):174-197. doi: 10.1089/dia.2005.7.174.
31. Weiss R, Yegorchikov Y, Shusterman A, Raz I. Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects. Diabetes Technol Ther. 2007;9(1):68-74. doi: 10.1089/dia.2006.0059.
32. Lyandres O, Yuen JM, Shah NC, et al. Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor. Diabetes Technol. Ther. 2008;10(4):257-265. doi: 10.1089/dia.2007.0288.
33. Alexeev VL, Das S, Finegold DN, Asher SA. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin. Chem. 2004;50(12):2353-2360. doi: 10.1373/clinchem.2004.039701.
34. Huber D, Talary M, Dewarrat F, Caduff A. The compensation of perturbing temperature fluctuation in glucose monitoring technologies based on impedance spectroscopy. Med Biol Eng Comput. 2007;45(9):863-876. doi: 10.1007/s11517-007-0229-3.
35. Gourzi M, Rouane A, Guelaz R, et al. Study of a new electromagnetic sensor for glycaemia measurement: in vitro results on blood pig. J. Med. Eng. Technol. 2003;27(6):276-281. doi: 10.1080/0309190031000098845.
36. ISO 15197:2013. In vitro diagnostic test systems -- Requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus. 2013:46.
37. Clarke WL, Kovatchev B. Continuous Glucose Sensors: Continuing Questions about Clinical Accuracy. J Diabetes Sci Technol. 2007;1(5):669-675. doi: 10.1177/193229680700100510.
38. D'Archangelo MJ. New guideline supports the development and evaluation of continuous interstitial glucose monitoring devices. J Diabetes Sci Technol. 2008;2(2):332-334. Pmc2771489.
39. Kovatchev BP, Gonder-Frederick LA, Cox DJ, Clarke WL. Evaluating the accuracy of continuous glucose-monitoring sensors: continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data. Diabetes Care. 2004;27(8):1922-1928.
40. Clarke WL, Cox D, Gonder-Frederick LA, et al. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care. 1987;10(5):622-628. doi: 10.2337/diacare.10.5.622.
41. Parkes JL, Slatin SL, Pardo S, Ginsberg BH. A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care. 2000;23(8):1143-1148. doi: 10.2337/diacare.23.8.1143.
42. Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess DJ. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol. 2008;2(6):1003-1015. doi: 10.1177/193229680800200610.
43. Lodwig V, Heinemann L. Continuous glucose monitoring with glucose sensors: calibration and assessment criteria. Diabetes Technol. Ther. 2003;5(4):572-586. doi: 10.1089/152091503322250596.
44. Cembrowski GC, Smith B, O'Malley EM. Increases in whole blood glucose measurements using optically based self-monitoring of blood glucose analyzers due to extreme Canadian winters. J Diabetes Sci Technol. 2009;3(4):661-667. doi: 10.1177/193229680900300407.
45. Wentholt IM, Hart AA, Hoekstra JB, Devries JH. Relationship between interstitial and blood glucose in type 1 diabetes patients: delay and the push-pull phenomenon revisited. Diabetes Technol. Ther. 2007;9(2):169-175. doi: 10.1089/dia.2006.0007.
46. Tipnis R, Vaddiraju S, Jain F, et al. Layer-by-layer assembled semipermeable membrane for amperometric glucose sensors. J Diabetes Sci Technol. 2007;1(2):193-200. doi: 10.1177/193229680700100209.
47. O'Brien KB, Killoran SJ, O'Neill RD, Lowry JP. Development and characterization in vitro of a catalase-based biosensor for hydrogen peroxide monitoring. Biosens. Bioelectron. 2007;22(12):2994-3000. doi: 10.1016/j.bios.2006.12.020.
48. Kim SN, Rusling JF, Papadimitrakopoulos F. Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules. Adv. Mater. 2007;19(20):3214-3228. doi: 10.1002/adma.200700665.
49. Palys B, Bokun A, Rogalski J. Poly-o-phenylenediamine as redox mediator for laccase. Electrochimica Acta. 2007;52(24):7075-7082. doi: 10.1016/j.electacta.2007.05.029.
50. Kay CW, Mennenga B, Gorisch H, Bittl R. Structure of the pyrroloquinoline quinone radical in quinoprotein ethanol dehydrogenase. J. Biol. Chem. 2006;281(3):1470-1476. doi: 10.1074/jbc.M511132200.
51. McNichols RJ, Cote GL. Optical glucose sensing in biological fluids: an overview. J Biomed Opt. 2000;5(1):5-16. doi: 10.1117/1.429962.
52. Barone PW, Strano MS. Single walled carbon nanotubes as reporters for the optical detection of glucose. J Diabetes Sci Technol. 2009;3(2):242-252. doi: 10.1177/193229680900300204.
53. Updike SJ, Shults MC, Rhodes RK, et al. Enzymatic glucose sensors. Improved long-term performance in vitro and in vivo. ASAIO J. 1994;40(2):157-163. doi: 10.1097/00002480-199404000-00007.
54. Wang J. Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis. 2001;13(12):983-988. doi: 10.1002/1521-4109(200108)13:12<983::AID-ELAN983>3.0.CO;2-#.
55. Galeska I, Chattopadhyay D, Moussy F, Papadimitrakopoulos F. Calcification-resistant Nafion/Fe3+ assemblies for implantable biosensors. Biomacromolecules. 2000;1(2):202-207. doi: 10.1021/bm0002813.
56. Praveen SS, Hanumantha R, Belovich JM, Davis BL. Novel hyaluronic acid coating for potential use in glucose sensor design. Diabetes Technol. Ther. 2003;5(3):393-399. doi: 10.1089/152091503765691893.
57. Bhardwaj U, Sura R, Papadimitrakopoulos F, Burgess DJ. Controlling acute inflammation with fast releasing dexamethasone-PLGA microsphere/pva hydrogel composites for implantable devices. J Diabetes Sci Technol. 2007;1(1):8-17. doi: 10.1177/193229680700100103.
58. Patil SD, Papadmitrakopoulos F, Burgess DJ. Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J. Control. Release. 2007;117(1):68-79. doi: 10.1016/j.jconrel.2006.10.013.
59. Nichols SP, Koh A, Storm WL, et al. Biocompatible materials for continuous glucose monitoring devices. Chem. Rev. 2013;113(4):2528-2549. doi: 10.1021/cr300387j.
60. Popat KC, Eltgroth M, Latempa TJ, et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials. 2007;28(32):4880-4888. doi: 10.1016/j.biomaterials.2007.07.037.
61. Narayan RJ, Aggarwal R, Wei W, et al. Mechanical and biological properties of nanoporous carbon membranes. Biomed Mater. 2008;3(3):034107. doi: 10.1088/1748-6041/3/3/034107.
62. Frost MC, Meyerhoff ME. Fabrication and in vivo evaluation of nitric oxide-releasing electrochemical oxygen-sensing catheters. Methods Enzymol. 2004;381:704-715. doi: 10.1016/s0076-6879(04)81045-0.
63. Phadtare S, Vinod VP, Wadgaonkar PP, et al. Free-standing nanogold membranes as scaffolds for enzyme immobilization. Langmuir. 2004;20(9):3717-3723. doi: 10.1021/la035870j.
64. Gerritsen M, Jansen JA, Lutterman JA. Performance of subcutaneously implanted glucose sensors for continuous monitoring. Neth J Med. 1999;54(4):167-179.
65. Yu B, Moussy Y, Moussy F. Coil-type implantable glucose biosensor with excess enzyme loading. Front. Biosci. 2005;10:512-520. doi: 10.2741/1547.
66. Chen T, Barton SC, Binyamin G, et al. A miniature biofuel cell. J. Am. Chem. Soc. 2001;123(35):8630-8631.
67. Mano N, Mao F, Heller A. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 2003;125(21):6588-6594. doi: 10.1021/ja0346328.
68. Kvist PH, Iburg T, Aalbaek B, et al. Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis. Diabetes Technol. Ther. 2006;8(5):546-559. doi: 10.1089/dia.2006.8.546.
69. McMahon CP, O'Neill RD. Polymer-enzyme composite biosensor with high glutamate sensitivity and low oxygen dependence. Anal. Chem. 2005;77(4):1196-1199. doi: 10.1021/ac048686r.
70. Errachid A, Ivorra A, Aguiló J, et al. New technology for multi-sensor silicon needles for biomedical applications. Sensors Actuators B: Chem. 2001;78(1–3):279-284. doi: 10.1016/S0925-4005(01)00826-7.
71. Johnson KW, Mastrototaro JJ, Howey DC, et al. In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue. Biosens. Bioelectron. 1992;7(10):709-714. doi: 10.1016/0956-5663(92)85053-D.
72. Steiner M-S, Duerkop A, Wolfbeis OS. Optical methods for sensing glucose. Chem. Soc. Rev. 2011;40(9):4805-4839. doi: 10.1039/C1CS15063D.
Review
For citations:
Tarasov Yu.V., Philippov Yu.I., Borisova E.A., Fedorova E.A., Mayorov A.Yu., Shestakova M.V. Continuous glucose monitoring technologies: state of the art and future perspectives in view of artificial pancreas. Problems of Endocrinology. 2015;61(4):54-72. https://doi.org/10.14341/probl201561454-72

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).