Preview

Problems of Endocrinology

Advanced search

Promising pharmacological targets for the treatment of the diseases associated with the impaired insulin receptor signaling pathway

https://doi.org/10.14341/probl201561644-54

Abstract

Diabetes mellitus (DM) is one of the most widespread chronic diseases in the world. In DM type 2, peripheral tissues demonstrate strong resistance to endogenous insulin (insulin resistance) which is caused by impaired ability of the hormone to stimulate glucose uptake in target cells (muscle, adipose or brain tissue, liver, etc.) and to reduce blood glucose level. Research data suggest that all mentioned reasons are most likely to be based on a disruption of signal transduction from insulin receptor (IR) into insulin-dependent intracellular signaling cascades. Contemporary DM treatment strategy is aimed at the maintenance of optimal blood glucose level by improving insulin production and increasing insulin sensitivity of tissue as well as prevention of macro- and microvascular complications and decrease of their intensity. At the same time, the search for new targets for creation of innovative anti-diabetic compounds can be considered a promising task due to the optimization of existing approaches and development of the novel ones taking into account results of the latest research into DM etiology and pathogenesis. A special position among possible targets is occupied by insulin receptor (IR) and IR-associated signaling pathways. Belonging to tyrosine kinase receptor family, IR has been actively studied during the last decades. This review considers in particular the IR structure and functioning of receptor-associated signaling pathways. The paper contains data on novel ligand-mimetics and IR sensitizers as well as other molecules, which affect different components of IR-associated signaling pathways, thus exerting significant antidiabetic effect. Action of these compounds is aimed at improvement of basic metabolic disorders resulting in hyperglycemia and is mainly carried out due to the following effects: activation and potentiation of insulin signaling, increase of insulin sensitivity of peripheral tissues; recovery of insulin secretion physiological mechanisms; reduction of glucose production in liver.

About the Authors

Evgeniy Aleksandrovich Gorbunov
NPF “MATERIA MEDICA HOLDING” LLC
Russian Federation

Competing Interests: Автор заявляет об отсутствии конфликта интересов.


Anastacia Andreevna Brigadirova
Volgograd State Medical University; Volgograd Medical Research Center
Russian Federation
MD
Competing Interests: Автор заявляет об отсутствии конфликта интересов.


Evgeniya Vladimirovna Kachaeva
NPF “MATERIA MEDICA HOLDING” LLC
Russian Federation
PhD
Competing Interests: Автор заявляет об отсутствии конфликта интересов.


Mikhail Aleksandrovich Putilovskiy
NPF “MATERIA MEDICA HOLDING” LLC
Russian Federation
MD, PhD
Competing Interests: Автор заявляет об отсутствии конфликта интересов.


Sergey Aleksandrovich Tarasov
NPF “MATERIA MEDICA HOLDING” LLC
Russian Federation
MD, PhD
Competing Interests: Автор заявляет об отсутствии конфликта интересов.


References

1. Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014;13(6):465-476. doi: 10.1038/nrd4275.

2. Спасов А.А., Петров В.И., Чепляева Н.И., Ленская К.В. Фундаментальные основы поиска лекарственных средств для терапии сахарного диабета 2-го типа // Вестник Российской академии медицинских наук. – 2013. – Т. 68. - №2 – С. 43-49. [Spasov AA, Petrov VI, Cheplyaeva NI, Lenskaya KV. Fundamental Bases of Search of Medicines for Therapy of a Diabetes Mellitus Type 2. Annals of the Russian academy of medical sciences. 2013;68(2):43-49. (In Russ)] doi: 10.15690/vramn.v68i2.548.

3. Alam U, Asghar O, Azmi S, Malik RA. General aspects of diabetes mellitus. Handb Clin Neurol. 2014;126:211-222. doi: 10.1016/B978-0-444-53480-4.00015-1.

4. Tiwari N. Therapeutic Targets for Diabetes Mellitus: An Update. Clinical Pharmacology & Biopharmaceutics. 2014;3(1). doi: 10.4172/2167-065x.1000117.

5. Дедов И.И., Шестакова М.В., Галстян Г.Р., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. // Сахарный диабет. – 2015. – Т. 18. - №1S – С. 1-112. [Dedov II, Shestakova MV, Galstyan GR, et al. Standards of specialized diabetes care. Edited by Dedov I.I., Shestakova M.V. (7th edition). Diabetes mellitus. 2015;18(1S):1-112. (In Russ)] doi: 10.14341/dm20151s1-112.

6. Jain S, Saraf S. Type 2 diabetes mellitus—Its global prevalence and therapeutic strategies. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2010;4(1):48-56. doi: 10.1016/j.dsx.2008.04.011.

7. American Diabetes Association. Standards of Medical Care in Diabetes--2014. Diabetes Care. 2013;37(Supplement_1):S14-S80. doi: 10.2337/dc14-S014.

8. Verspohl EJ. Novel Pharmacological Approaches to the Treatment of Type 2 Diabetes. Pharmacol Rev. 2012;64(2):188-237. doi: 10.1124/pr.110.003319.

9. Дедов И.И, Шестакова М.В., Аметов А.С., и др. Консенсус совета экспертов Российской ассоциации эндокринологов по инициации и интенсификации сахароснижающей терапии у больных сахарным диабетом 2 типа. // Сахарный диабет. - 2011. – Т. 14. - №4. – С. 6-17. [Dedov II, Shestakova MV, Ametov AS, et al. Russian Association of Endocrinologists expert consensus document on initiation and intensification of antyhyperglycaemic therapy in type 2 diabetes mellitus. Diabetes mellitus. 2011;14(4):6-17. (In Russ)] doi: 10.14341/2072-0351-5810.

10. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of Hyperglycemia in Type 2 Diabetes: A Patient-Centered Approach: Position Statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35(6):1364-1379. doi: 10.2337/dc12-0413.

11. Доскина Е.В. Современная комбинированная терапия сахарного диабета 2 типа, или Борьба с «неподдающимся пациентом». Эффективная фармакотерапия. – 2014. - №1 – С. 50-56. [Doskina YV. Modern combination therapy of diabetes, or Control of non-compliant patient. Effektivnaya farmakoterapiya. 2014;(1):50-56. (in Russ.)]

12. Ardon O, Procter M, Tvrdik T, et al. Sequencing analysis of insulin receptor defects and detection of two novel mutations in INSR gene. Molecular Genetics and Metabolism Reports. 2014;1:71-84. doi: 10.1016/j.ymgmr.2013.12.006.

13. Ward CW, Lawrence MC. Landmarks in insulin research. Front Endocrinol (Lausanne). 2011;2:76. doi: 10.3389/fendo.2011.00076.

14. Youngren JF. Regulation of insulin receptor function. Cell Mol Life Sci. 2007;64(7-8):873-891. doi: 10.1007/s00018-007-6359-9.

15. Whitehead JP, Clark SF, Ursø B, James DE. Signalling through the insulin receptor. Curr Opin Cell Biol. 2000;12(2):222-228. doi: 10.1016/s0955-0674(99)00079-4.

16. Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne). 2012;3:34. doi: 10.3389/fendo.2012.00034.

17. Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol. 2011;47(1):R1-10. doi: 10.1530/JME-11-0022.

18. Mackenzie R, Elliott B. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes Metab Syndr Obes. 2014:55. doi: 10.2147/dmso.s48260.

19. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799-806. doi: 10.1038/414799a.

20. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nature Reviews Molecular Cell Biology. 2006;7(2):85-96. doi: 10.1038/nrm1837.

21. Lebeche D, Davidoff AJ, Hajjar RJ. Interplay between impaired calcium regulation and insulin signaling abnormalities in diabetic cardiomyopathy. Nat Clin Pract Cardiovasc Med. 2008;5(11):715-724. doi: 10.1038/ncpcardio1347.

22. Brunetti A. Transcriptional regulation of human insulin receptor gene by the high-mobility group protein HMGI(Y). The FASEB Journal. 2001;15(2):492-500. doi: 10.1096/fj.00-0190com.

23. Liu Y, Lai Y-C, Hill Elaine V, et al. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle. Biochem J. 2013;455(2):195-206. doi: 10.1042/bj20130644.

24. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am. 2004;88(4):787-835. doi: 10.1016/j.mcna.2004.04.013.

25. Leto D, Saltiel AR. Regulation of glucose transport by insulin: traffic control of GLUT4. Nature Reviews Molecular Cell Biology. 2012;13(6):383-396. doi: 10.1038/nrm3351.

26. De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nature Reviews Drug Discovery. 2002;1(10):769-783. doi: 10.1038/nrd917.

27. Jung Seung H, Ha Yun J, Shim Eun K, et al. Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator. Biochem J. 2007;403(2):243-250. doi: 10.1042/bj20061123.

28. Tang C-H, He Y, Li W, et al. Ursolic Acid Increases Glucose Uptake through the PI3K Signaling Pathway in Adipocytes. PLoS One. 2014;9(10):e110711. doi: 10.1371/journal.pone.0110711.

29. Qiang G, Xue S, Yang JJ, et al. Identification of a Small Molecular Insulin Receptor Agonist With Potent Antidiabetes Activity. Diabetes. 2014;63(4):1394-1409. doi: 10.2337/db13-0334.

30. Altaf QA, Barnett AH, Tahrani AA. Novel therapeutics for type 2 diabetes: insulin resistance. Diabetes, Obesity and Metabolism. 2015;17(4):319-334. doi: 10.1111/dom.12400.

31. Bates SH, Jones RB, Bailey CJ. Insulin-like effect of pinitol. Br J Pharmacol. 2000;130(8):1944-1948. doi: 10.1038/sj.bjp.0703523.

32. Geethan PKMA, Prince PSM. Antihyperlipidemic effect of D-pinitol on streptozotocin-induced diabetic wistar rats. J Biochem Mol Toxicol. 2008;22(4):220-224. doi: 10.1002/jbt.20218.

33. Pillai SI, Subramanian SP, Kandaswamy M. A novel insulin mimetic vanadium–flavonol complex: Synthesis, characterization and in vivo evaluation in STZ-induced rats. Eur J Med Chem. 2013;63:109-117. doi: 10.1016/j.ejmech.2013.02.002.

34. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Biochemical and medical importance of vanadium compounds. Acta Biochim Pol. 2012;59(2):195-200.

35. Zorzano A, Palacín M, Marti L, García-Vicente S. Arylalkylamine vanadium salts as new anti-diabetic compounds. J Inorg Biochem. 2009;103(4):559-566. doi: 10.1016/j.jinorgbio.2009.01.015.

36. Rehder D. Vanadium. Its Role for Humans. 2013;13:139-169. doi: 10.1007/978-94-007-7500-8_5.

37. Manchem VP, Goldfine ID, Kohanski RA, et al. A Novel Small Molecule That Directly Sensitizes the Insulin Receptor In Vitro and In Vivo. Diabetes. 2001;50(4):824-830. doi: 10.2337/diabetes.50.4.824.

38. Pender C, Goldfine ID, Manchem VP, et al. Regulation of Insulin Receptor Function by a Small Molecule Insulin Receptor Activator. J Biol Chem. 2002;277(46):43565-43571. doi: 10.1074/jbc.M202426200.

39. Cao Y, Himmeldirk KB, Qian Y, et al. Biological and biomedical functions of Penta-O-galloyl-d-glucose and its derivatives. J Nat Med. 2014;68(3):465-472. doi: 10.1007/s11418-014-0823-2.

40. Tsai HJ, Chou S-Y. A novel hydroxyfuroic acid compound as an insulin receptor activator – structure and activity relationship of a prenylindole moiety to insulin receptor activation. J Biomed Sci. 2009;16(1):68. doi: 10.1186/1423-0127-16-68.

41. Liu K, Xu L, Szalkowski D, et al. Discovery of a Potent, Highly Selective, and Orally Efficacious Small-Molecule Activator of the Insulin Receptor. J Med Chem. 2000;43(19):3487-3494. doi: 10.1021/jm000285q.

42. Tahrani AA, Bailey CJ, Del Prato S, Barnett AH. Management of type 2 diabetes: new and future developments in treatment. The Lancet. 2011;378(9786):182-197. doi: 10.1016/s0140-6736(11)60207-9.

43. Эпштейн О.И. Феномен релиз-активности и гипотеза "пространственного" гомеостаза. // Успехи Физиологических Наук. – 2013. – Т. 44. - №3 – С. 54–76. [Epstein OI. The phenomenon of release activity and the hypothesis of “spatial” homeostasis. Usp Fiziol Nauk. 2013;44(3):54-76. (In Russ)].

44. Gorbunov EA, Nicoll J, Kachaeva EV, et al. Subetta increases phosphorylation of insulin receptor β-subunit alone and in the presence of insulin. Nutr Diabetes. 2015;5(7):e169. doi: 10.1038/nutd.2015.20.

45. Nicoll J, Gorbunov EA, Tarasov SA, Epstein OI. Subetta Treatment Increases Adiponectin Secretion by Mature Human Adipocytes In Vitro. Int J Endocrinol. 2013;2013:1-4. doi: 10.1155/2013/925874.

46. Горбунов Е.А., Nicoll J., Мысливец А.А., и др. Субетта повышает чувствительность мышечных клеток человека к инсулину. // Бюл. экспер. биол. – 2015. – Т. 159. – №4 – С. 454–456. [Gorbunov EA, Nicoll J, Myslivets AA, et al. Subetta Enhances Sensitivity of Human Muscle Cells to Insulin. Bull Exp Biol Med. 2015;159(4):463-465. (in Russ.)] doi: 10.1007/s10517-015-2992-8.

47. Хейфец И.А., Спасов А.А., Воронкова М.П., и др. Изучение гипогликемической активности субетты и росиглитазона на модели стрептозотоцинового диабета у крыс. // Бюл. экспер. биол. – 2012. – Т. 153. – №1 – С. 62–64. [Kheyfets IA, Spasov AA, Voronkova MP, et al. Study of Hypoglycemic Activity of Subetta and Rosiglitazone on the Model of Streptozotocin-Induced Diabetes Mellitus in Rats. Bull Exp Biol Med. 2012;153(1):54-56. (in Russ.)] doi: 10.1007/s10517-012-1641-8.

48. Bailbé D, Philippe E, Gorbunov E, et al. The Novel Oral Drug Subetta Exerts an Antidiabetic Effect in the Diabetic Goto-Kakizaki Rat: Comparison with Rosiglitazone. J Diabetes Res. 2013;2013:1-9. doi: 10.1155/2013/763125.

49. Andrianova E., Vorobyev S., Epstein O. The efficacy and safety of new medicinal product in the treatment of type 2 diabetes: the results of a randomized comparative clinical trial. 17th World Congress of Basic and Clinical Pharmacology. Cape Town, South Africa. July 13-18, 2014. Basic Clin Pharmacol Toxicol. 2014;155:Supl.1:247-248.

50. Rask-Madsen C, Kahn CR. Tissue-Specific Insulin Signaling, Metabolic Syndrome, and Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2012;32(9):2052-2059. doi: 10.1161/atvbaha.111.241919.

51. Muoio DM, Newgard CB. Mechanisms of disease: Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nature Reviews Molecular Cell Biology. 2008;9(3):193-205. doi: 10.1038/nrm2327.

52. Ткачук В.А., Воротников А.В. Молекулярные механизмы развития резистентности к инсулину. // Сахарный диабет. – 2014. – Т. 17. - №2 – С. 29-40. [Tkachuk VA, Vorotnikov AV. Molecular Mechanisms of Insulin Resistance Development. Diabetes mellitus. 2014;17(2):29-40. (in Russ.)] doi: 10.14341/dm2014229-40.

53. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes. 2014;7:241-253. doi: 10.2147/DMSO.S43731.

54. Ichihara Y, Fujimura R, Tsuneki H, et al. Rational design and synthesis of 4-substituted 2-pyridin-2-ylamides with inhibitory effects on SH2 domain-containing inositol 5′-phosphatase 2 (SHIP2). Eur J Med Chem. 2013;62:649-660. doi: 10.1016/j.ejmech.2013.01.014.

55. Johnson TO, Ermolieff J, Jirousek MR. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nature Reviews Drug Discovery. 2002;1(9):696-709. doi: 10.1038/nrd895.

56. Thareja S, Aggarwal S, Bhardwaj TR, Kumar M. Protein Tyrosine Phosphatase 1B Inhibitors: A Molecular Level Legitimate Approach for the Management of Diabetes Mellitus. Med Res Rev. 2012;32(3):459-517. doi: 10.1002/med.20219.

57. Fukuda S, Ohta T, Sakata S, et al. Pharmacological profiles of a novel protein tyrosine phosphatase 1B inhibitor, JTT-551. Diabetes, Obesity and Metabolism. 2010;12(4):299-306. doi: 10.1111/j.1463-1326.2009.01162.x.

58. Ito M, Fukuda S, Sakata S, et al. Pharmacological Effects of JTT-551, a Novel Protein Tyrosine Phosphatase 1B Inhibitor, in Diet-Induced Obesity Mice. J Diabetes Res. 2014;2014:1-7. doi: 10.1155/2014/680348.

59. Paoli P, Cirri P, Caselli A, et al. The insulin-mimetic effect of Morin: A promising molecule in diabetes treatment. Biochim Biophys Acta. 2013;1830(4):3102-3111. doi: 10.1016/j.bbagen.2013.01.017.

60. Nguyen P-H, Zhao B-T, Ali MY, et al. Insulin-Mimetic Selaginellins fromSelaginella tamariscinawith Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitory Activity. J Nat Prod. 2015;78(1):34-42. doi: 10.1021/np5005856.

61. Yamazaki H, Sumilat DA, Kanno S-i, et al. A polybromodiphenyl ether from an Indonesian marine sponge Lamellodysidea herbacea and its chemical derivatives inhibit protein tyrosine phosphatase 1B, an important target for diabetes treatment. J Nat Med. 2012;67(4):730-735. doi: 10.1007/s11418-012-0735-y.

62. Berdeaux R, Zhang Y, Zhang H, et al. (+)-Rutamarin as a Dual Inducer of Both GLUT4 Translocation and Expression Efficiently Ameliorates Glucose Homeostasis in Insulin-Resistant Mice. PLoS One. 2012;7(2):e31811. doi: 10.1371/journal.pone.0031811

63. Samarghandian S, Borji A, Delkhosh MB, Samini F. Safranal treatment improves hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. J Pharm Pharm Sci. 2013;16(2):352-362.

64. Davis J, Mittra S, Kanaujia A, et al. Antihyperglycemic effect of Annona squamosa hexane extract in type 2 diabetes animal model: PTP1B inhibition, a possible mechanism of action? Indian J Pharmacol. 2012;44(3):326. doi: 10.4103/0253-7613.96304.

65. Maeda A, Kai K, Ishii M, et al. Safranal, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves glucose tolerance in diabetic KK-Aymice. Mol Nutr Food Res. 2014;58(6):1177-1189. doi: 10.1002/mnfr.201300675.

66. Hazman Ö, Ovalı S. Investigation of the Anti-Inflammatory Effects of Safranal on High-Fat Diet and Multiple Low-Dose Streptozotocin Induced Type 2 Diabetes Rat Model. Inflammation. 2014;38(3):1012-1019. doi: 10.1007/s10753-014-0065-1.

67. Ranjana, Tripathi YB. Insulin secreting and alpha-glucosidase inhibitory activity of hexane extract of Annona squamosa Linn. in streptozotocin (STZ) induced diabetic rats. Indian J Exp Biol. 2014;52(6):623-629.

68. Shirwaikar A, Rajendran K, Dinesh Kumar C, Bodla R. Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin–nicotinamide type 2 diabetic rats. J Ethnopharmacol. 2004;91(1):171-175. doi: 10.1016/j.jep.2003.12.017.

69. Kaleem M, Asif M, Ahmed QU, Bano B. Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin-induced diabetic rats. Singapore Med J. 2006;47(8):670-675.

70. Gupta RK, Kesari AN, Diwakar S, et al. In vivo evaluation of anti-oxidant and anti-lipidimic potential of Annona squamosa aqueous extract in Type 2 diabetic models. J Ethnopharmacol. 2008;118(1):21-25. doi: 10.1016/j.jep.2008.03.008.

71. Ponrasu T, Suguna L. Efficacy ofAnnona squamosaon wound healing in streptozotocin-induced diabetic rats. Int Wound J. 2012;9(6):613-623. doi: 10.1111/j.1742-481X.2011.00924.x.

72. Ponrasu T, Suguna L. Efficacy of Annona squamosa L in the Synthesis of Glycosaminoglycans and Collagen during Wound Repair in Streptozotocin Induced Diabetic Rats. BioMed Res Int. 2014;2014:1-10. doi: 10.1155/2014/124352.

73. He R-j, Yu Z-h, Zhang R-y, Zhang Z-y. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin. 2014;35(10):1227-1246. doi: 10.1038/aps.2014.80.

74. Pipeline [WEB-datasheet]. Isis Pharmaceuticals Inc. URL: http://isispharm.com/backup/Pipeline/Therapeutic-Areas/Metabolic-Disease.htm#ISIS-PTP1BRx (Дата обращения: 23.11.2015).


Supplementary files

1. Сигнальный каскад рецептора инсулина.
Subject
Type Рисунок 1
Download (1MB)    
Indexing metadata ▾

Review

For citations:


Gorbunov E.A., Brigadirova A.A., Kachaeva E.V., Putilovskiy M.A., Tarasov S.A. Promising pharmacological targets for the treatment of the diseases associated with the impaired insulin receptor signaling pathway. Problems of Endocrinology. 2015;61(6):44-54. https://doi.org/10.14341/probl201561644-54

Views: 606


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)