Polyphenolic plant extracts: effects on disorders of carbohydrate and lipid metabolism in laboratory animals
https://doi.org/10.14341/probl201662438-44
Abstract
Modern nutrition has clear evidence of the involvement into the metabolism of many minor food components, which were not previously discussed as factors necessary for life support of health and ill human. One of the innovative approaches to the creation of a new generation of specialized food products for the dietary treatment of type 2 diabetes is a targeted use in their composition plant minor biologically active food substances with proven significant hypoglycemic, cholesterol-lowering and antioxidant action as a «micro-ingredients». Promising sources of natural functional food ingredients for the dietary treatment and prevention of type 2 diabetes and its attendant complications are plant extracts with a high content of natural polyphenolic compounds. The natural polyphenolic compounds include flavonoids, obligate food antioxidants what is the reason of their hypoglycemic and/or lipid-lowering effects. However, we consume no individual flavonoids, but their mixtures, with plant food. Data about antidiabetic properties of plant extracts containing various combinations of flavonoids are very important in the framework of the problem of dietary correction and prevention of type 2 diabetes from the position of clinical nutrition. The review briefly discusses the effect of green tea, bilberry leaves and bean coats plant extracts on disorders of carbohydrate and lipid metabolism in laboratory animals with experimentally or genetically determined diabetes. The presented analysis of publications shows that the results of experimental studies in vitro and in vivo confirm the antioxidant, hypoglycemic and/or hypolipidemic effect of polyphenolic plant extracts. It was concluded that the inclusion of plant extracts of flavonoids in the specialized food products for targeted nutritional correction and/or prevention of metabolic disorders of type 2 diabetes is a promising direction.
About the Authors
Vladimir K. MazoRussian Federation
PhD
Competing Interests:
No conflict of interest
Yuliia S. Sidorova
Russian Federation
PhD
Competing Interests:
No conflict of interest
Vladimir A. Shipelin
Russian Federation
PhD
Competing Interests:
No conflict of interest
Nikita A. Petrov
Russian Federation
PhD
Competing Interests:
No conflict of interest
Alla A. Kochetkova
Russian Federation
PhD
Competing Interests:
No conflict of interest
References
1. Bohn T. Dietary factors affecting polyphenol bioavailability. Nutr Rev. 2014;72(7):429-452. doi: 10.1111/nure.12114
2. Tarahovsky YS, Muzafarov EN, Kim YA. Rafts making and rafts braking: how plant flavonoids may control membrane heterogeneity. Mol Cell Biochem. 2008;314(1-2):65-71. doi: 10.1007/s11010-008-9766-9
3. Han MK. Epigallocatechin gallate, a constituent of green tea, suppresses cytokine-induced pancreatic beta-cell damage. Exp Mol Med. 2003;35(2):136-139. doi: 10.1038/emm.2003.19
4. Zhang Z, Ding Y, Dai X, et al. Epigallocatechin-3-gallate protects pro-inflammatory cytokine induced injuries in insulin-producing cells through the mitochondrial pathway. Eur J Pharmacol. 2011;670(1):311-316. doi: 10.1016/j.ejphar.2011.08.033
5. Hsu CH, Liao YL, Lin SC, et sl. Does supplementation with green tea extract improve insulin resistance in obese type 2 diabetics? A randomized, double-blind, and placebo-controlled clinical trial. Altern Med Rev. 2011;16(2):157-163.
6. Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;22(1):1-7. doi: 10.1016/j.jnutbio.2010.06.006
7. Zheng XX, Xu YL, Li SH, et al. Effects of green tea catechins with or without caffeine on glycemic control in adults: a metaanalysis of randomized controlled trials. Am J Clin Nutr. 2013;97(4):750-762. doi: 10.3945/ajcn.111.032573
8. Liu CY, Huang CJ, Huang LH, et al. Effects of green tea extract on insulin resistance and lucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: a randomized, double-blinded, and placebo-controlled trial. PLoS One. 2014;9(3):E91163. doi: 10.1371/journal.pone.0091163
9. Wolfram S, Raederstorff D, Preller M, et al. Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr. 2006;136(10):2512-2518.
10. Song EK, Hur H, Han MK. Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice. Arch Pharm Res. 2003;26(7):559-563. doi: 10.1007/Bf02976881
11. Tsuneki H, Ishizuka M, Terasawa M, et al. Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans BMC. Pharmacol. 2004;4(1):18. doi: 10.1186/1471-2210-4-18
12. Wu L-Y, Juan C-C, Hwang LS, et al. Green tea supplementation ameliorates insulin resistance and increases glucose transporter IV content in a fructose-fed rat model. Eur J Nutr. 2004;43(2):116-124. doi: 10.1007/S00394-004-0450-x
13. Baluchnejadmojarad T, Roghani M. Chronic oral epigallocatechin-gallate alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: involvement of oxidative stress. Iran J Pharm Res. 2012;11(4):1243-1253. PMC3813147
14. Roghani M, Baluchnejadmojarad T. Hypoglycemic and hypolipidemic effect and antioxidant activity of chronic epigallocatechin-gallate in streptozotocin-diabetic rats. Pathophysiology. 2010;17(1):55-59. doi: 10.1016/j.pathophys.2009.07.004
15. Potenza MA, Marasciulo FL, Tarquinio M, et al. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab. 2007;292(5):E1378-E1387. doi: 10.1152/ajpendo.00698.2006
16. Yoon SP, Maeng YH, Hong R, et al. Protective effects of epigallocatechin gallate (EGCG) on streptozotocin-induced diabetic nephropathy in mice. Acta Histochem. 2014;116(8):1210-1215. doi: 10.1016/j.acthis.2014.07.003
17. Isbrucker RA, Edwards JA, Wolz E, et al. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: dermal, acute and short-term toxicity studies. Food Chem Toxicol. 2006;44(5):636-650. doi: 10.1016/j.fct.2005.11.003
18. Isbrucker RA, Edwards JA, Wolz E, et al. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 3: teratogenicity and reproductive toxicity studies in rats. Food Chem Toxicol. 2006;44(5):651-661. doi: 10.1016/j.fct.2005.11.002
19. Martineau LC, Couture A, Spoor D, et al. Anti-diabetic properties of the Canadian lowbush blueberry vaccinium angustifolium Ait. Phytomedicine. 2006;13(9-10):612-623. doi: 10.1016/j.phymed.2006.08.005
20. Grace MH, Ribnicky DM, Kuhn P, et al. Hypoglycemic activity of a novel anthocyanin-rich formulation from lowbush blueberry, vaccinium angustifolium aiton. Phytomedicine. 2009;16(5):406-415. doi: 10.1016/j.phymed.2009.02.018
21. Ehlenfeldt MK, Prior RL. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J Agric Food Chem. 2001;49(5):2222-2227. doi: 10.1021/jf0013656
22. Cravotto G, Boffa L, Genzini L, Garella D. Phytotherapeutics: an evaluation of the potential of 1000 plants. J Clin Pharm Ther. 2010;35(1):11-48. doi: 10.1111/j.1365-2710.2009.01096.x
23. Upton R, Editor. Bilberry fruit vaccinium myrtillus L. Standards Of Analysis, Quality Control, And Therapeutics. Santa Cruz, Ca: American Herbal Pharmacopoeia And Therapeutic Compendium. 2001.
24. Burdulis D, Sarkinas A, Jasutiene I, et al. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) Fruits. Acta Pol Pharm. 2009;66(4):399-408.
25. Seeram NP. Berry Fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem. 2008;56(3):627-629. doi: 10.1021/jf071988k
26. Wu X, Prior RL. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem. 2005;53(7):2589-2599. doi: 10.1021/jf048068b
27. Sakakibara H, Ogawa T, Koyanagi A, et al. Distribution and excretion of bilberry anthocyanins [corrected] in mice. J Agric Food Chem. 2009;57(17):7681-7686. doi: 10.1021/jf901341b
28. Watson EM. Some observations on the effect of blueberry leaf extract in diabetes mellitus. Can Med Assoc J. 1928;19(2):166-171.
29. Valentová K, Ulrichová J, Cvak L, Šimánek V. Cytoprotective effect of a bilberry extract against oxidative damage of rat hepatocytes. Food Chem. 2007;101(3):912-917. doi: 10.1016/j.foodchem.2006.02.038
30. Lala G, Malik M, Zhao C, et al. Anthocyanin-rich extracts inhibit multiple biomarkers of colon cancer in rats. Nutr Cancer. 2006;54(1):84-93. doi: 10.1207/s15327914nc5401_10
31. Kolosova NG, Shcheglova TV, Sergeeva SV, Loskutova LV. Long-term antioxidant supplementation attenuates oxidative stress markers and cognitive deficits in senescent-accelerated oxys rats. Neurobiol Aging. 2006;27(9):1289-1297. doi: 10.1016/j.neurobiolaging.2005.07.022
32. Song Y, Park HJ, Kang SN, et al. Blueberry peel extracts inhibit adipogenesis in 3T3-L1 cells and reduce high-fat diet-induced obesity. PLos One. 2013;8(7):E69925. doi: 10.1371/journal.pone.0069925
33. Brader L, Overgaard A, Christensen LP, et al. Polyphenol-rich bilberry ameliorates total cholesterol and LDL-cholesterol when implemented in the diet of zucker diabetic fatty rats. Rev Diabet Stud. 2013;10(4):270-282. doi: 10.1900/rds.2013.10.270
34. Takikawa M, Inoue S, Horio F, Tsuda T. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-cctivated protein kinase in diabetic mice. J Nutr. 2010;140(3):527-533. doi: 10.3945/jn.109.118216
35. Hardie DG. Role of AMP-ativated protein kinase in the metabolic syndrome and in heart disease. Febs Lett. 2008;582(1):81-89. doi: 10.1016/j.febslet.2007.11.018
36. Mykkanen OT, Kalesnykas G, Adriaens M, et al. Bilberries potentially alleviate stress-related retinal gene expression induced by a high-fat diet in mice. Mol Vis. 2012;18:2338-2351. PMC3444297
37. Roopchand DE, Grace MH, Kuhn P, et al. Efficient sorption of polyphenols to soybean flour enables natural fortification of foods. Food Chem. 2012;131(4):1193-1200. doi: 10.1016/j.foodchem.2011.09.103
38. Roopchand DE, Kuhn P, Poulev A, et al. Biochemical analysis and in vivo hypoglycemic activity of a grape polyphenol-soybean flour complex. J Agric Food Chem. 2012;60(36):8860-8865. doi: 10.1021/jf300232h
39. Roopchand DE, Kuhn P, Rojo LE, et al. Blueberry polyphenol-enriched soybean flour reduces hyperglycemia, body weight gain and serum cholesterol in mice. Pharmacol Res. 2013;68(1):59-67. doi: 10.1016/j.phrs.2012.11.008
40. Jeong HR, Jo YN, Jeong JH, et al. Blueberry (Vaccinium virgatum) leaf extracts protect against abeta-induced cytotoxicity and cognitive impairment. J Med Food. 2013;16(11):968-976. doi: 10.1089/jmf.2013.2881
41. Lee IC, Kim DY, Choi BY. Antioxidative activity of blueberry leaf extract prevents high-fat diet-induced obesity in C57BL/6 mice. J Cancer Prev. 2014;19(3):209-215. doi: 10.15430/jcp.2014.19.3.209
42. Nagao K, Higa K, Shirouchi B, et al. Effect of Vaccinium ashei reade leaves on lipid metabolism in Otsuka long-evans Tokushima fatty rats. Biosci Biotechnol Biochem. 2008;72(6):1619-1622. doi: 10.1271/bbb.80036
43. Inoue N, Nagao K, Nomura S, et al. Effect of Vaccinium ashei reade leaf extracts on lipid metabolism in obese OLETF rats. Biosci Biotechnol Biochem. 2011;75(12):2304-2308. doi: 10.1271/bbb.110451
44. Yuji K, Sakaida H, Kai T, et al. Effect of dietary blueberry (vaccinium ashei reade) leaves on serum and hepatic lipid levels in rats. Journal of Oleo Science. 2013;62(2):89-96. doi: 10.5650/jos.62.89
45. Beninger CW, Hosfield GL. Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids fromphaseolus vulgaris. Seed coat color genotypes. J Agric Food Chem. 2003;51(27):7879-7883. doi: 10.1021/jf0304324
46. Aparicio-Fernández X, Manzo-Bonilla L, Loarca-Piña GF. Comparison of antimutagenic activity of phenolic compounds in newly harvested and stored common beans phaseolus vulgaris against aflatoxin B1. J Food Sci. 2005;70(1):S73-S78. doi: 10.1111/j.1365-2621.2005.tb09068.x
47. Zhao J, Fan Z, Zhou W. Research progress on health functions of red adzuki bean. Journal of Agricultural Science and Technology. 2009;11(3):46-50.
48. Xavier-Filho J, Oliveira AEA, Silva LBD, et al. Plant insulin or glucokinin: a conflicting issue. Brazilian Journal of Plant Physiology. 2003;15(2). doi: 10.1590/s1677-04202003000200002
49. Ranilla LG, Kwon Y-I, Genovese MI, et al. Effect of thermal treatment on phenolic compounds and functionality linked to type 2 diabetes and hypertension management of peruvian and Brazilian bean cultivars (Phaseolus vulgaris L.). Usingin Vitromethods. J Food Biochem. 2010;34(2):329-355. doi: 10.1111/j.1745-4514.2009.00281.x
50. Ranilla LG, Genovese MI, Lajolo FM. Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and peruvian bean cultivars (Phaseolus vulgaris L.). J Agric Food Chem. 2007;55(1):90-98. doi: 10.1021/jf062785j
51. Saks V, Cao D, Li H, et al. Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLos One. 2011;6(6):E21071. doi: 10.1371/journal.pone.0021071
52. Beninger CW, Hosfield GL, Nair MG. Flavonol glycosides from the seed coat of a new manteca-type dry bean (Phaseolus vulgaris L.). J Agric Food Chem. 1998;46(8):2906-2910. doi: 10.1021/jf9801522
53. Aparicio-Fernandez X, Yousef GG, Loarca-Pina G, et al. Characterization of polyphenolics in the seed coat of black jamapa bean (Phaseolus Vulgaris L.). J Agric Food Chem. 2005;53(11):4615-4622. doi: 10.1021/jf047802o
54. Jang Y-H, Kang M-J, Choe E-O, et al. Mung bean voat ameliorates hyperglycemia and the antioxidant status in type 2 diabetic db/db mice. Food Sci Biotech. 2013;23(1):247-252. doi: 10.1007/s10068-014-0034-3
55. Yao Y, Chen F, Wang M, et al. Antidiabetic activity of mung bean extracts in diabetic KK-aymice. J Agric Food Chem. 2008; 56(19):8869-8873. doi: 10.1021/jf8009238
56. Wang JY, Zhu C, Qian TW, et al. Extracts of black bean peel and pomegranate peel ameliorate oxidative stress induced hyperglycemia in mice. Exp Ther Med. 2014. doi: 10.3892/etm.2014.2040
57. Saks V, Cao D, Li H, et al. Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLos One. 2011;6(6):E21071. doi: 10.1371/journal.pone.0021071
58. Мазо В.К., Мурашев А.Н., Сидорова Ю.С. и др. Генетические модели диабета 2-го типа на крысах для оценки эффективности минорных биологически активных веществ пищи // Вопросы Питания. — 2014. — Т.83. — №6. — С.25-31. [Mazo VK, Murashev AN, Sidorova YS, et al. Genetic rat models of type 2 diabetes for evaluation the effectiveness of minor biologically active food substances.Problems of Nutrition. 2014;83(6):25-31. (In Russ.)].
59. Мазо В.К., Сидорова Ю.С., Кочеткова А.А. Генетические модели сахарного диабета 2-го типа на мышах для оценки эффективности минорных биологически активных веществ пищи. // Вопросы Питания. — 2015. — Т.84. — №6. — C.63-68. [Mazo VK, Sidorova YuS, Kochetkova AA. Genetic mice models of type 2 diabetes for evaluation of the effectiveness of minor biologically active food substances. Problems of Nutrition. 2015;84(6):63-68. (In Russ.) doi: 10.14341/probl201662438-44
Supplementary files
Review
For citations:
Mazo V.K., Sidorova Yu.S., Shipelin V.A., Petrov N.A., Kochetkova A.A. Polyphenolic plant extracts: effects on disorders of carbohydrate and lipid metabolism in laboratory animals. Problems of Endocrinology. 2016;62(4):38-44. (In Russ.) https://doi.org/10.14341/probl201662438-44

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).