The effect of vanadium compounds on carbohydrate and lipid metabolism disorders
https://doi.org/10.14341/probl10093
Abstract
At this stage in the development of nutriciological science, it has not been established if biologically active substances are essential to the human body; however, an explanation of the physiological role of minor biologically active substances is necessary to clarify the qualitative composition of Nutrioma. Of particular interest is the transition metal, vanadium. Adding vanadium to the diet of animals with induced or genetically determined type 2 diabetes mellitus normalizes glucose and blood insulin levels, reduces insulin resistance, promotes β-cell regeneration, and has a beneficial effect on lipid metabolism. Clinical studies of the effectiveness of vanadium are not convincing, in most part, because of their insufficient duration. The review briefly discusses the main mechanisms of the action of vanadium compounds. Therapeutic doses of vanadium compounds may overlap with toxic doses. Organic vanadium compounds could be used in significantly lower doses. The main problem with the possible use of vanadium compounds in antidiabetic therapy is the balance between their beneficial effects and the connected risks of side effects.
About the Authors
Yuliya S. SidorovaFederal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation
PhD
Margarita G. Skalnaya
RUDN University
Russian Federation
MD, PhD, professor
Aleksey A. Tinkov
RUDN University; P.G. Demidov State University of Yaroslavl
Russian Federation
MD, PhD
Vladimir K. Mazo
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation
PhD, professor
References
1. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Washington, DC: National Academies Press; 2001. 800 p. doi: https://doi.org/10.17226/10026
2. Shechter Y. Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes. Coord Chem Rev. 2003;237(1-2):3-11. doi: https://doi.org/10.1016/S0010-8545(02)00302-8
3. Arya GS, Hedaytullah MD, Yadav RA, Sachan K. Treating diabetes mellitus with vanadium salts – a future prospectus: a review. Int J Pharm Sci Rev Res. 2011;8(2):183-185.
4. Huang M, Wu Y, Wang N, et al. Is the hypoglycemic action of vanadium compounds related to the suppression of feeding? Biol Trace Elem Res. 2014;157(3):242-248. doi: https://doi.org/10.1007/s12011-013-9882-6
5. Rehder D. The future of/for vanadium. Dalt Trans. 2013;42(33): 11749-11761. doi: https://doi.org/10.1039/c3dt50457c
6. Rehder D. Biological and medicinal aspects of vanadium. Inorg Chem Commun. 2003;6(5):604-617. doi: https://doi.org/10.1016/S1387-7003(03)00050-9
7. Cakir Y, Yildiz D. Efflux of glutathione and glutathione complexes from human erythrocytes in response to vanadate. Blood Cells Mol Dis. 2013;50(1):1-7. doi: https://doi.org/10.1016/j.bcmd.2012.07.001
8. Sanna D, Ugone V, Pisano L, et al. Behavior of the potential antitumor V(IV)O complexes formed by flavonoid ligands. 2. Characterization of sulfonate derivatives of quercetin and morin, interaction with the bioligands of the plasma and preliminary biotransformation studies. J Inorg Biochem. 2015;153:167-177. doi: https://doi.org/10.1016/j.jinorgbio.2015.07.018
9. Rehder D. The role of vanadium in biology. Metallomics. 2015;7(5): 730-742. doi: https://doi.org/10.1039/C4MT00304G
10. Pessoa JC, Tomaz I. Transport of therapeutic vanadium and ruthenium complexes by blood plasma components. Curr Med Chem. 2010;17(31):3701-3738. doi: https://doi.org/10.2174/092986710793213742
11. Willsky GR, Halvorsen K, Godzala ME 3rd, et al. Coordination chemistry may explain pharmacokinetics and clinical response of vanadyl sulfate in type 2 diabetic patients. Metallomics. 2013;5(11):1491-1502. doi: https://doi.org/10.1039/c3mt00162h
12. Boulassel B, Sadeg N, Roussel O, et al. Fatal poisoning by vanadium. Forensic Sci Int. 2011;206(1-3):e79-e81. doi: https://doi.org/10.1016/j.forsciint.2010.10.027
13. Wang YX, Chen HG, Li XD, et al. Concentrations of vanadium in urine and seminal plasma in relation to semen quality parameters, spermatozoa DNA damage and serum hormone levels. Sci Total Environ. 2018;645:441-448. doi: https://doi.org/10.1016/j.scitotenv.2018.07.137
14. Yang X. Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane. Coord Chem Rev. 2003;237(1-2):103-111. doi: https://doi.org/10.1016/S0010-8545(02)00247-3
15. Capella MA, Capella LS, Valente RC, et al. Vanadate-induced cell death is dissociated from H2O2 generation. Cell Biol Toxicol. 2007;23(6):413-420. doi: https://doi.org/10.1007/s10565-007-9003-4
16. Meng FG, Zhang ZY. Redox regulation of protein tyrosine phosphatase activity by hydroxyl radical. Biochim Biophys Acta. 2013;1834(1):464-469. doi: https://doi.org/10.1016/j.bbapap.2012.06.018
17. Rehder D. The potentiality of vanadium in medicinal applications. Future Med Chem. 2012;4(14):1823-1837. doi: https://doi.org/10.4155/fmc.12.103
18. Niu X, Xiao R, Wang N, et al. The molecular mechanisms and rational design of anti-diabetic vanadium compounds. Curr Top Med Chem. 2016;16(8):811-822. doi: https://doi.org/10.2174/1568026615666150827094652
19. Jakusch T, Kiss T. In vitro study of the antidiabetic behavior of vanadium compounds. Coord Chem Rev. 2017;351:118-126. doi: https://doi.org/10.1016/j.ccr.2017.04.007
20. Yoshikawa Y, Sakurai H, Crans DC, et al. Structural and redox requirements for the action of anti-diabetic vanadium compounds. Dalt Trans. 2014;43(19):6965-6972. doi: https://doi.org/10.1039/C3DT52895B
21. Jiang P, Dong Z, Ma B, et al. Effect of vanadyl rosiglitazone, a new insulin-mimetic vanadium complexes, on glucose homeostasis of diabetic mice. Appl Biochem Biotechnol. 2016;180(5):841-851. doi: https://doi.org/10.1007/s12010-016-2137-1
22. Adam AM, Naglah AM, Al-Omar MA, Refat MS. Synthesis of a new insulin-mimetic anti-diabetic drug containing vitamin A and vanadium(IV) salt: chemico-biological characterizations. Int J Immunopathol Pharmacol. 2017;30(3):272-281. doi: https://doi.org/10.1177/0394632017719601
23. Pillai SI, Subramanian SP, Kandaswamy M. A novel insulin mimetic vanadium-flavonol complex: synthesis, characterization and in vivo evaluation in STZ-induced rats. Eur J Med Chem. 2013;63:109-117. doi: https://doi.org/10.1016/j.ejmech.2013.02.002
24. Mehdi MZ, Pandey SK, Théberge JF, Srivastava AK. Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochem Biophys. 2006;44(1):73-81. doi: https://doi.org/10.1385/CBB:44:1:073
25. Xie M, Chen D, Zhang F, et al. Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats. J Inorg Biochem. 2014;136:47-56. doi: https://doi.org/10.1016/j.jinorgbio.2014.03.011
26. Bin-Jaliah I. Modulatory effect of concomitant administration of insulin and vanadium on inflammatory biomarkers in type 2 diabetic rats: role of adiponectin. Chin J Physiol. 2018;61(1):42-49. doi: https://doi.org/10.4077/CJP.2018.BAG523
27. Ahmed El-Shazly S, Ahmed MM, Ibrahim ZS, Refat MS. Synthesis, characterization, and efficacy evaluation of a new anti-diabetic vanadyl(II) thiamine hydrochloride complex in streptozotocin-induced diabetic rats. Int J Immunopathol Pharmacol. 2015;28(2):227-239. doi:10.1177/0394632015576036
28. El Karib AO, Al-Ani B, Al-Hashem F, et al. Insulin and vanadium protect against osteoarthritis development secondary to diabetes mellitus in rats. Arch Physiol Biochem. 2016;122(3):148-154. doi: https://doi.org/10.3109/13813455.2016.1159698
29. Mohammadi MT, Pirmoradi L, Mesbah F, et al. Trophic actions of oral vanadium and improved glycemia on the pancreatic beta-cell ultrastructure of streptozotocin-induced diabetic rats. JOP. 2014;15(6):591-596. doi: https://doi.org/10.6092/1590-8577/2855
30. Hussain Shah SZ, Naveed AK, Rashid A. Effects of oral vanadium on glycaemic and lipid profile in rats. J Pak Med Assoc. 2016; 66(12):1592-1596
31. Yilmaz-Ozden T, Kurt-Sirin O, Tunali S, et al. Ameliorative effect of vanadium on oxidative stress in stomach tissue of diabetic rats. Bosn J basic Med Sci. 2014;14(2):105-109. doi: https://doi.org/10.17305/bjbms.2014.2273
32. Pirmoradi L, Noorafshan A, Safaee A, Dehghani GA. Quantitative assessment of proliferative effects of oral vanadium on pancreatic islet volumes and beta cell numbers of diabetic rats. Iran Biomed J. 2016;20(1):18-25.
33. Ippolito JA, Krell ES, Cottrell J, et al. Effects of local vanadium delivery on diabetic fracture healing. J Orthop Res. 2017;35(10):2174-2180. doi: https://doi.org/10.1002/jor.23521
34. Missaoui S, Ben Rhouma K, Yacoubi MT, et al. Vanadyl sulfate treatment stimulates proliferation and regeneration of beta cells in pancreatic islets. J Diabetes Res. 2014;2014:540242. doi: https://doi.org/10.1155/2014/540242
35. Wasan KM, Risovic V, Yuen VG, McNeill JH. Differences in plasma homocysteine levels between Zucker fatty and Zucker diabetic fatty rats following 3 weeks oral administration of organic vanadium compounds. J Trace Elem Med Biol. 2006;19(4):251-258. doi: https://doi.org/10.1016/j.jtemb.2005.10.001
36. Pelletier J, Domingues N, Castro MM, Östenson CG. In vitro effects of bis(1,2-dimethyl-3-hydroxy-4-pyridinonato)oxidovanadium(IV), or VO(dmpp)2, on insulin secretion in pancreatic islets of type 2 diabetic Goto-Kakizaki rats. J Inorg Biochem. 2016;154:29-34. doi: https://doi.org/10.1016/j.jinorgbio.2015.11.004
37. Jiang P, Dong Z, Ma B, et al. Effect of vanadyl rosiglitazone, a new insulin-mimetic vanadium complexes, on glucose homeostasis of diabetic mice. Appl Biochem Biotechnol. 2016;180(5):841-851. doi: https://doi.org/10.1007/s12010-016-2137-1
38. Thompson KH, Orvig C. Vanadium in diabetes: 100 years from Phase 0 to Phase I. J Inorg Biochem. 2006;100(12):1925-1935. doi: https://doi.org/10.1016/j.jinorgbio.2006.08.016
39. Thompson KH, Lichter J, LeBel C, et al. Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem. 2009;103(4):554-558. doi: https://doi.org/10.1016/j.jinorgbio.2008.12.003
40. Marzban L, McNeill JH. Insulin-like actions of vanadium: potential as a therapeutic agent. J Trace Elem Exp Med. 2003;16(4):253-267. doi: https://doi.org/10.1002/jtra.10034
41. Mohammad AA, Mahdi K, Seid MM, Forough N. Effect of sodium metavanadate supplementation on lipid and glucose metabolism biomarkers in type 2 diabetic patients. Malays J Nutr. 2008;14(1):113-119.
42. Soveid M, Dehghani GA, Omrani GR. Long-term efficacy and safety of vanadium in the treatment of type 1 diabetes. Arch Iran Med. 2013;16(7):408-411.
43. Tinkov AA, Popova EV, Polyakova VS, et al. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats. J Trace Elem Med Biol. 2015;29:176-181. doi: https://doi.org/10.1016/j.jtemb.2014.07.006
44. Tinkov AA, Sinitskii AI, Popova EV, et al. Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance. Med Hypotheses. 2015;85(3):343-347. doi: https://doi.org/10.1016/j.mehy.2015.06.005
45. Crans DC. Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) compounds. J Inorg Biochem. 2000;80(1-2):123-131. doi: https://doi.org/10.1016/s0162-0134(00)00048-9
46. Cam MC, Brownsey RW, McNeill JH. Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent? Can J Physiol Pharmacol. 2000;78(10):829-847. doi: https://doi.org/10.1139/y00-053
47. Mohammad A, Sharma V, McNeill JH. Vanadium increases GLUT4 in diabetic rat skeletal muscle. Mol Cell Biochem. 2002; 233(1-2):139-143.
48. Sun Q, Sekar N, Goldwaser I, et al. Vanadate restores glucose 6-phosphate in diabetic rats: a mechanism to enhance glucose metabolism. Am J Physiol Metab. 2000;279(2):E403-E410. doi: https://doi.org/10.1152/ajpendo.2000.279.2.E403
49. Gross B, Pawlak M, Lefebvre P, Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 2017;13(1):36-49. doi: https://doi.org/10.1038/nrendo.2016.135
50. Tsave O, Yavropoulou MP, Kafantari M, et al. Comparative assessment of metal-specific adipogenic activity in zinc and vanadium-citrates through associated gene expression. J Inorg Biochem. 2018;186:217-227. doi: https://doi.org/10.1016/j.jinorgbio.2018.04.020
51. Zhao P, Yang X. Vanadium compounds modulate PPARγ activity primarily by increasing PPARγ protein levels in mouse insulinoma NIT-1 cells. Metallomics. 2013;5(7):836-843. doi: https://doi.org/10.1039/c3mt20249f
52. Kim TH, Kim MY, Jo SH, et al. Modulation of the transcriptional activity of peroxisome proliferator-activated receptor gamma by protein-protein interactions and post-translational modifications. Yonsei Med J. 2013;54(3):545-559. doi: https://doi.org/10.3349/ymj.2013.54.3.545
53. Wu Y, Huang M, Zhao P, Yang X. Vanadylacetylacetonate upregulates PPARγ and adiponectin expression in differentiated rat adipocytes. J Biol Inorg Chem. 2013;18(6):623-631. doi: https://doi.org/10.1007/s00775-013-1007-3
54. Kioseoglou E, Petanidis S, Gabriel C, Salifoglou A. The chemistry and biology of vanadium compounds in cancer therapeutics. Coord Chem Rev. 2015;301-302:87-105. doi: https://doi.org/10.1016/j.ccr.2015.03.010
55. Scior T, Guevara-Garcia J, Do QT, et al. Why antidiabetic vanadium complexes are not in the pipeline of “Big Pharma” drug research? A critical review. Curr Med Chem. 2016;23(25):2874-2891. doi: https://doi.org/10.2174/0929867323666160321121138
56. Scior T, Guevara-García A, Bernard P, et al. Are vanadium compounds drugable? Structures and effects of antidiabetic vanadium compounds: a critical review. Mini Rev Med Chem. 2005;5(11):995-1008. doi: https://doi.org/10.2174/138955705774575264
57. Kiersztan A, Winiarska K, Drozak J, et al. Differential effects of vanadium, tungsten and molybdenum on inhibition of glucose formation in renal tubules and hepatocytes of control and diabetic rabbits: beneficial action of melatonin and N-acetylcysteine. Mol Cell Biochem. 2004;261(1-2):9-21. doi: https://doi.org/10.1023/b:mcbi.0000028733.88718.c3
58. Hosseini MJ, Seyedrazi N, Shahraki J, Pourahmad J. Vanadium induces liver toxicity through reductive activation by glutathione and mitochondrial dysfunction. Adv Biosci Biotechnol. 2012;3(8):1096-1103. doi: https://doi.org/10.4236/abb.2012.38134
59. Domingo JL, Gomez M, Sanchez DJ, et al. Toxicology of vanadium compounds in diabetic rats: the action of chelating agents on vanadium accumulation. Mol Cell Biochem. 1995;153(1-2):233-240. doi: https://doi.org/10.1007/bf01075942
Supplementary files
Review
For citations:
Sidorova Yu.S., Skalnaya M.G., Tinkov A.A., Mazo V.K. The effect of vanadium compounds on carbohydrate and lipid metabolism disorders. Problems of Endocrinology. 2019;65(3):184-190. https://doi.org/10.14341/probl10093

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).