The use of confocal microscopy in experimental studies and clinical practice of an endocrinologist: modern opportunities
https://doi.org/10.14341/probl10140
Abstract
Confocal microscopy is a modern imaging method that provides ample opportunities for in vitro and in vivo research. The clinical part of the review focuses on well-established techniques, such as corneal confocal microscopy for the diagnosis of diabetic neuropathy or endocrine ophthalmopathy; new methods are briefly described (intraoperative evaluation of tissues obtained by removing pituitary adenomas, thyroid and parathyroid glands). In the part devoted to fundamental research, the use of confocal microscopy to characterize the colocalization of proteins, as well as three-dimensional intracellular structures and signaling pathways in vivo, is considered. Indicators of intracellular calcium are analyzed.
About the Authors
Natalya G. MokryshevaEndocrinology research centre
Russian Federation
MD, PhD, Professor
Sergey L. Kiselev
Vavilov Institute of General Genetics of the Russian Academy of Sciences
Russian Federation
PhD, Professor
Natalia V. Klementieva
Privolzhskiy Research Medical University
Russian Federation
PhD
Anna M. Gorbacheva
Endocrinology Research Centre
Russian Federation
MD
Ivan I. Dedov
Endocrinology Research Centre; I.M. Sechenov First Moscow State Medical University
Russian Federation
MD, PhD, Professor
References
1. Nwaneshiudu A, Kuschal C, Sakamoto FH, et al. Introduction to confocal microscopy. J Invest Dermatol. 2012;132(12):e3. doi: https://doi.org/10.1038/jid.2012.429
2. Bhutani J, Chakinala RC, Bhutani S, Sachdeva S. Endocrine and metabolic disease: confocal microscopy as a diagnostic aid. Indian J Endocrinol Metab. 2015;19(1):171–173. doi: https://doi.org/10.4103/2230-8210.146877
3. Katoh R, Hemmi A, Komiyama A, Kawaoi A. Confocal laser scanning microscopic observation of angioarchitectures in human thyroid neoplasms. Hum Pathol. 1999;30(10):1226–1231. doi: https://doi.org/10.1016/s0046-8177(99)90042-4
4. Pang Y, Tsigkou O, Spencer JA, et al. Analyzing structure and function of vascularization in engineered bone tissue by video-rate intravital microscopy and 3D image processing. Tissue Eng Part C Methods. 2015;21(10):1025–1031. doi: https://doi.org/10.1089/ten.TEC.2015.0091
5. Tovey SC, Brighton PJ, Willars GB. Confocal microscopy: theory and applications for cellular signaling. Methods Mol Biol. 2005; 312:57–85. doi: https://doi.org/10.1385/1-59259-949-4:057
6. Bögeholz N, Schulte JS, Kaese S, et al. The effects of SEA0400 on Ca2+ transient amplitude and proarrhythmia depend on the Na+/Ca2+ exchanger expression level in murine models. Front Pharmacol. 2017;8:649. doi: https://doi.org/10.3389/fphar.2017.00649
7. Remington SJ. Green fluorescent protein: a perspective. Protein Sci. 2011;20(9):1509–1519. doi: https://doi.org/10.1002/pro.684
8. Chen Y, Huang LM. A simple and fast method to image calcium activity of neurons from intact dorsal root ganglia using fluorescent chemical Ca2+ indicators. Mol Pain. 2017;13:1744806917748051. doi: https://doi.org/10.1177/1744806917748051
9. Koh J, Hogue JA, Sosa JA. A novel ex vivo method for visualizing live-cell calcium response behavior in intact human tumors. PLoS One. 2016;11(8):e0161134. doi: https://doi.org/10.1371/journal.pone.0161134
10. Pérez Koldenkova V, Nagai T. Genetically encoded Ca(2+) indicators: properties and evaluation. Biochim Biophys Acta. 2013;1833(7): 1787–1797. doi: https://doi.org/10.1016/j.bbamcr.2013.01.011
11. Pahlavan S, Morad M. Total internal reflectance fluorescence imaging of genetically engineered ryanodine receptor-targeted Ca2+ probes in rat ventricular myocytes. Cell Calcium. 2017;66:98–110. doi: https://doi.org/10.1016/j.ceca.2017.07.003
12. Liu C, Deb S, Ferreira VS, et al. Kinetics of PTEN-mediated PI(3,4,5)P3 hydrolysis on solid supported membranes. PLoS One. 2018;13(2):e0192667. doi: https://doi.org/10.1371/journal.pone.0192667
13. Zhang Q, Xiao K, Liu H, et al. Site-specific polyubiquitination differentially regulates parathyroid hormone receptor-initiated MAPK signaling and cell proliferation. J Biol Chem. 2018;293(15):5556–5571. doi: https://doi.org/10.1074/jbc.RA118.001737
14. Miyashita T. Confocal microscopy for intracellular co-localization of proteins. Methods Mol Biol. 2015;1278:515–526. doi: https://doi.org/10.1007/978-1-4939-2425-7_34
15. Stancu C, Coculescu M. Colocalization methods in pituitary tumorigenesis aged-related in MEN1 KO and wild type mice. J Med Life. 2014;7 (Spec Iss 3):87–94.
16. Mercurio L, Cecchetti S, Ricci A, et al. Phosphatidylcholine-specific phospholipase C inhibition down- regulates CXCR4 expression and interferes with proliferation, invasion and glycolysis in glioma cells. PLoS One. 2017;12(4):e0176108. doi: https://doi.org/10.1371/journal.pone.0176108
17. Cagalinec M, Liiv M, Hodurova Z, et al. Role of mitochondrial dynamics in neuronal development: mechanism for wolfram syndrome. PLoS Biol. 2016;14(7):e1002511. doi: https://doi.org/10.1371/journal.pbio.1002511
18. Walczak J, Partyka M, Duszyński J, Szczepanowska J. Implications of mitochondrial network organization in mitochondrial stress signalling in NARP cybrid and Rho0 cells. Sci Rep. 2017;7(1):14864. doi: https://doi.org/10.1038/s41598-017-14964-y
19. Okuthe GE. DNA and RNA pattern of staining during oogenesis in zebrafish (Danio rerio): a confocal microscopy study. Acta Histochem. 2013;115(2):178–184. doi: https://doi.org/10.1016/j.acthis.2012.06.006
20. Legartova S, Suchankova J, Krejci J, et al. Advanced confocal microscopy techniques to study protein-protein interactions and kinetics at DNA lesions. J Vis Exp. 2017;(Iss 129). doi: https://doi.org/10.3791/55999
21. Tavakoli M, Petropoulos IN, Malik RA. Corneal confocal microscopy to assess diabetic neuropathy: an eye on the foot. J Diabetes Sci Technol. 2013;7(5):1179–1189. doi: https://doi.org/10.1177/193229681300700509
22. Hyndiuk RA, Kazarian EL, Schultz RO, Seideman S. Neurotrophic corneal ulcers in diabetes mellitus. Arch Ophthalmol. 1977; 95(12):2193–2196. doi: https://doi.org/10.1001/archopht.1977.04450120099012
23. Ziegler D, Papanas N, Zhivov A, et al. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes. 2014;63(7):2454–2463. doi: https://doi.org/10.2337/db13-1819
24. Asghar O, Petropoulos IN, Alam U, et al. Corneal confocal microscopy detects neuropathy in subjects with impaired glucose tolerance. Diabetes Care. 2014;37(9):2643–2646. doi: https://doi.org/10.2337/dc14-0279
25. Quattrini C, Tavakoli M, Jeziorska M, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56(8):2148–2154. doi: https://doi.org/10.2337/db07-0285
26. Sivaskandarajah GA, Halpern EM, Lovblom LE, et al. Structure-function relationship between corneal nerves and conventional small-fiber tests in type 1 diabetes. Diabetes Care. 2013;36(9):2748–2755. doi: https://doi.org/10.2337/dc12-2075
27. Tavakoli M, Mitu-Pretorian M, Petropoulos IN, et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes. 2013;62(1):254–260. doi: https://doi.org/10.2337/db12-0574
28. Артемова Е.В., Галстян Г.Р., Атарщиков Д.С., и др. Конфокальная микроскопия роговицы – новый неинвазивный метод диагностики начальных проявлений повреждения периферической нервной системы при сахарном диабете // Проблемы эндокринологии. – 2015. – Т.61. – №2. – С. 32–38. [Artemova EV, Galstyan GR, Atarshchikov DS, et al. Confocal retinal microscopy – the new non-invasive method of the early manifestation of the lesions in the peripheral nervous system associated with diabetes mellitus. Problems of endocrinology. 2015;61(2):32–38. (In Russ).] doi: https://doi.org/10.14341/probl201561232-38
29. Smith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes care. 2006;29(6):1294–1299. doi: https://doi.org/10.2337/dc06-0224
30. Tavakoli M, Kallinikos P, Iqbal A, et al. Corneal confocal microscopy detects improvement in corneal nerve morphology with an improvement in risk factors for diabetic neuropathy. Diabet Med. 2011;28(10):1261–1267. doi: https://doi.org/10.1111/j.1464-5491.2011.03372.x
31. Davidson EP1, Coppey LJ, Holmes A, Yorek MA. Changes in corneal innervation and sensitivity and acetylcholine-mediated vascular relaxation of the posterior ciliary artery in a type 2 diabetic rat. Invest Ophthalmol Vis Sci. 2012;53(3):1182–1187. doi: https://doi.org/10.1167/iovs.11-8806
32. Wang EF, Misra SL, Patel D V. In vivo confocal microscopy of the human cornea in the assessment of peripheral neuropathy and systemic diseases. Biomed Res Int. 2015;2015:951081. doi: https://doi.org/10.1155/2015/951081
33. Mukherjee R, Tewary S, Routray A. Diagnostic and prognostic utility of non-invasive multimodal imaging in chronic wound monitoring: a systematic review. J Med Syst. 2017;41(3):46. doi: https://doi.org/10.1007/s10916-016-0679-y
34. Vardaxis NJ, Brans TA, Boon ME, et al. Confocal laser scanning microscopy of porcine skin: implications for human wound healing studies. J Anat. 1997;190 (Pt 4):601–611. doi: https://doi.org/10.1046/j.1469-7580.1997.19040601.x
35. Stumpp OF, Bedi VP, Wyatt D, et al. In vivo confocal imaging of epidermal cell migration and dermal changes post nonablative fractional resurfacing: study of the wound healing process with corroborated histopathologic evidence. J Biomed Opt. 2009;14(2):24018. doi: https://doi.org/10.1117/1.3103316
36. Longo C, Galimberti M, De Pace B, et al. Laser skin rejuvenation: epidermal changes and collagen remodeling evaluated by in vivo confocal microscopy. Lasers Med Sci. 2013;28(3):769–776. doi: https://doi.org/10.1007/s10103-012-1145-9
37. Lange-Asschenfeldt S, Bob A, Terhorst D, et al. Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing. J Biomed Opt. 2012;17(7):76016. doi: https://doi.org/10.1117/1.JBO.17.7.076016
38. Sattler EC, Poloczek K, Kästle R, Welzel J. Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy. J Am Acad Dermatol. 2013;69(4):e165–173. doi: https://doi.org/10.1016/j.jaad.2013.04.052
39. Wei Y-H, Chen W-L, Hu F-R, Liao SL. In vivo confocal microscopy of bulbar conjunctiva in patients with Graves’ ophthalmopathy. J Formos Med Assoc. 2015;114(10):965–972. doi: https://doi.org/10.1016/j.jfma.2013.10.003
40. Villani E, Viola F, Sala R, et al. Corneal involvement in Graves’ orbitopathy: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2010;51(9):4574–4578. doi: https://doi.org/10.1167/iovs.10-5380
41. Kocabeyoglu S, Mocan MC, Cevik Y, Irkec M. Ocular Surface Alterations and In Vivo Confocal Microscopic Features of Corneas in Patients With Newly Diagnosed Graves’ Disease. Cornea. 2015;34(7):745–749. doi: https://doi.org/10.1097/ICO.0000000000000426
42. Wirth D, Smith TW, Moser R, Yaroslavsky AN. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy. Phys Med Biol. 2015;60(7):3003–3011. doi: https://doi.org/10.1088/0031-9155/60/7/3003
43. Mooney MA, Zehri AH, Georges JF, Nakaji P. Laser scanning confocal endomicroscopy in the neurosurgical operating room: a review and discussion of future applications. Neurosurg Focus. 2014;36(2):E9. doi: https://doi.org/10.3171/2013.11.FOCUS13484
44. Palmer F, Larson B, Moreira A, et al. Identification of parathyroid glands during thyroidectomy using reflectance confocal microscopy: a feasibility study [Internet]. In: World Congress on Thyroid Cancer − 2013, Abstract Book. 2013. [cited 2019 March 12]: [About 1p.] Availible from: https://thyroidworldcongress.com/wp-content/uploads/2013/07/O067_Palmer.pdf
45. Ragazzi M, Piana S, Longo C, et al. Fluorescence confocal microscopy for pathologists. Mod Pathol. 2014;27(3):460–471. doi: https://doi.org/10.1038/modpathol.2013.158
46. White WM, Tearney GJ, Pilch BZ, et al. A novel, noninvasive imaging technique for intraoperative assessment of parathyroid glands: confocal reflectance microscopy. Surgery. 2000;128(6):1088–1100; discussion 1100-1001. doi: https://doi.org/10.1067/msy.2000.111190
47. White WM, Baldassano M, Rajadhyaksha M, et al. Confocal reflectance imaging of head and neck surgical specimens. A comparison with histologic analysis. Arch Otolaryngol Head Neck Surg. 2004;130(8):923–928. doi: https://doi.org/10.1001/archotol.130.8.923
48. Chang T-P, Palazzo F, Tolley N, et al. Vascularity assessment of parathyroid glands using confocal endomicroscopy: towards an intraoperative imaging tool for real-time in situ viability assessment. Eur J Surg Oncol. 2014;40(1):S3. doi: https://doi.org/10.1016/j.ejso.2014.07.008
49. Que SK, Fraga-Braghiroli N, Grant-Kels JM, et al. Through the looking glass: Basics and principles of reflectance confocal microscopy. J Am Acad Dermatol. 2015;73(2):276–284. doi: https://doi.org/10.1016/j.jaad.2015.04.047
50. Jonkman J, Brown CM. Any way you slice it-a comparison of confocal microscopy techniques. J Biomol Tech. 2015;26(2):54–65. doi: https://doi.org/10.7171/jbt.15-2602-003
Supplementary files
|
1. Fig. 1. The results of the study L. Chen et al. [eight]. An example of a change in the concentration of intracellular calcium over time when 80 mM KCl solution in dorsal ganglia neurons is added to the medium. Coloring Fluo-4AM. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(578KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. The results of a study by Y. Chen et al. [eight]. An example of a change in the concentration of intracellular calcium when 80 mM KCl solution in dorsal ganglia neurons is added to the medium. Coloring Oregon Green – 488. Сon - control image, High KCl - image under conditions of 80 mM KCl. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(23KB)
|
Indexing metadata ▾ |
|
3. Fig. 3. The results of the study L. Mercurio et al. [16]. Fluorescence confocal microscopy: stained with CXCR4 (green label), PLC (red label), cell nuclei (DAPI - blue label). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(48KB)
|
Indexing metadata ▾ |
|
4. Fig. 4. Research results J. Walczak et al. [eighteen]. Intracellular distribution of mitochondria (red fluorescence) and expression of mitochondrial stress protein Drp 1 (green fluorescence) in NARP cells. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(29KB)
|
Indexing metadata ▾ |
|
5. Рисунок 5 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(49KB)
|
Indexing metadata ▾ |
Review
For citations:
Mokrysheva N.G., Kiselev S.L., Klementieva N.V., Gorbacheva A.M., Dedov I.I. The use of confocal microscopy in experimental studies and clinical practice of an endocrinologist: modern opportunities. Problems of Endocrinology. 2019;65(3):174-183. https://doi.org/10.14341/probl10140

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).