Preview

Проблемы Эндокринологии

Расширенный поиск

Белки, связывающие тиреоидные гормоны и их физиологическая роль

https://doi.org/10.14341/probl12197

Содержание

Перейти к:

Аннотация

Стероидные и тиреоидные гормоны окалывают регуляторное действие на целый комплекс физиологических процессов, составляющих основу нормального развития и функционирования организма. В русле крови человека от 96 до 99,9% общих масс кортизола, прогестерона, тироксина и трийодтиронина циркулируют в виде комплексов с гормонсвязывающими транспортными белками. Гипотеза "свободных гормонов" отводит этим транспортным белкам пассивную функцию поддержания стационарного пула биологически активных несвязанных гормонов за счет быстрой диссоциации комплексов в ответ на потребности тканей-мишеней. Исследования последних лет выявили активную роль транспортных белков и их рецепторов на поверхности клеточных мембран во взаимодействии стероидных и тиреоидных гормонов с компетентными тканями.


Структурные аспекты биологической активности комплексов кортикостероидсвязывающего и сексстероидсвязывающего глобулинов с природными лигандами подробно изложены в обзорной статье. Настоящий обзор литературы посвящен описанию физико-химических свойств и биомедицинских характеристик многокомпонентной системы белков, связывающих тиреоидные гормоны в плазме крови человека. Особое внимание уделено рассмотрению физиологического значения этих белков в рамках гипотезы свободных гормонов и в свете их недавно обнаруженных специфических транспортных функций.

Для цитирования:


Свиридов О.В. Белки, связывающие тиреоидные гормоны и их физиологическая роль. Проблемы Эндокринологии. 1994;40(6):57-63. https://doi.org/10.14341/probl12197

For citation:


Sviridov O.V. Proteins binding the thyroid hormones and their physiological role. Problems of Endocrinology. 1994;40(6):57-63. (In Russ.) https://doi.org/10.14341/probl12197

Стероидные и тиреоидные гормоны окалывают регуляторное действие на целый комплекс физиологических процессов, составляющих основу нормального развития и функционирования организма. В русле крови человека от 96 до 99,9% общих масс кортизола, прогестерона, тироксина (Т- и трийодтиронина (Т3) циркулируют в виде комплексов с гормонсвязывающими транспортными белками (53]. Гипотеза "свободных гормонов" [68, 70] отводит этим транспортным белкам пассивную функцию поддержания стационарного пула биологически активных несвязанных гормонов за счет быстрой диссоциации комплексов в ответ на потребности тканей-мишеней. Исследования последних лет выявили активную роль транспортных белков и их рецепторов на поверхности клеточных мембран во взаимодействии стероидных и тиреоидных гормонов с компетентными тканями.

Структурные аспекты биологической активности комплексов кортикостероидсвязывающего и сексстероидсвязывающего глобулинов с природными лигандами подробно изложены в обзорной статье [76]. Настоящий обзор литературы посвящен описанию физико-химических свойств и биомедицинских характеристик многокомпонентной системы белков, связывающих тиреоидные гормоны в плазме крови человека. Особое внимание уделено рассмотрению физиологического значения этих белков в рамках гипотезы свободных гормонов и в свете их недавно обнаруженных специфических транспортных функций.

  1. Гипотеза: свободных горооиов о роли Т4-

связывающих Осикло оиааоы чсилвска

Содержание не связанных с белками тиреоидных гормонов в сыворотке человека не превышает 0,4% от их общей концентрации. Однако тиреоидный статус человека в норме и при заболеваниях, а также механизмы многих физиологических процессов с участием Т, и Т, можно объяснить биологической активностью свободных гормонов и количественно оценить путем определения их концентрации. Гипотеза о свободных гормонах, которая была выдвинута еще в 50-х годах [68], получила затем экспериментальное и теоретическое развитие, а недавно была представлена в виде физиологически обоснованной математической модели [53].

Рассмотрим, придерживаясь сложившейся в этой области терминологии, как гипотеза свободных гормонов в свете накопленных за длительный период экспериментальных данных определяет (физиологическое значение транспортных белков плазмы [53, 68, 70].

  1. Резервная функция. Тироксинсвязывающис белки обеспечивают накопление и хранение тиреоидных гормонов вне щитовидной железы.
  2. Буферная функция.Ткани защищены от неконтролируемого избыточного поступления гормона и захватывают его из постоянно возобновляемого свободного пула в соответствии с метаболической потребностью.
  3. Высвобождающая функция. Связана со второй функцией и основана на том, что кинетические характеристики обратимого гормон-белкового взаимодействия обеспечивают за счет быстрой диссоциации комплексов постоянное возобновление функции свободных гормонов.

1 Автор выражает благодарность д-ру Jacob Robbins (отдел генетики и биохимии, Национальный институт здоровья США) за методическую помощь в подготовке этого обзора.

Резервная функция вносит существенный вклад в тиреоидный гомеостаз, который заключается в поддержании постоянства поступления тиреоидного гормона в ткани и обеспечивает стационарный характер гормонального действия. Биохимическим индикатором резервной функции служит отношение средней концентрации общего Т, (100 нМ) к средней концентрации свободного Т- (30 пМ)в сыворотке. При отсутствии высокоаффинного Т--связывающего глобулина (ТСГ) в сыворотке это отношение уменьшается более чем в 3 раза, тогда как удаление среднеаффинного Т--связывающего преальбумина (ТСПА, транстиретин) или низкоаффинного альбумина дает лишь незначительный эффект. Значит, ТСГ сыворотки является главным периферическим запасающим белком для Т-, секретированного щитовидной железой. Соответствующий биохимический индекс для Т3 (2 нМ/8 пМ) мал и может обсуждаться в связи с механизмом доставки гормона тканям, а не с его резервированием в сыворотке. Существенный вклад в понимание важности резервной функции Т--Связз1вающих белков внесли данные о том, что транспортные белки обеспечивают равномерное распределение поступившего тиреоидного гормона по всем клеткам органа [51, 53]. Хотя альбумин в принципе сам способен выполнить эту роль, действие ТСГ может быть более эффективным из-за меньшей чувствительности к физиологическим вариациям содержания жирных кислот [53].

Эффективность выполнения транспортным белком буферной функции зависит от величины К4 его комплекса с тиреоидным гормоном, которая должна быть одного порядка с концентрацией свободного гормона в сыворотке. Сравнение значений концентрации свободного Т- (3,4 -10-11 М) и Ка ТСГ (10_10 М) показывает, что, хотя ТСГ и не самый оптимальный буфер, но все же более подходящий для этой роли, чем остальные гораздо менее аффинные Т--связывающие белки. Физиологическое значение буферной функции ТСГ выведено, в частности, из наблюдений за больными с наследственным отсутствием ТСГ. Эти больные имели повышенные концентрации тиреоглобулина в сыворотке вследствие ответной реакции щитовидной железы на увеличенную секрецию тиреотропина из-за больших флюктуаций содержания свободного Т- в сыворотке, лишенной ТСГ и обладающей пониженной буферной емкостью [70].

Физиологическая роль и механизм проявления гормонвысво- бождающей функции ТСГ явились предметом дискуссии, что нашло отражение в ряде противоречивых публикаций [32, 52, 55, 56]. W.Pardridge и соавт. [55, 56], основываясь на результатах экспериментов по перфузии органов in vivo, сделали вывод, что Т-, связанный с ТСГ, поступает только в некоторые органы, например печень, и недоступен для других, в частности для мозга, тогда как комплекс Т- с альбумином является главным источником гормона для всех тканей. Высвобождение тиреоидного гормона происходит внутри капилляров из-за резкого снижения гормон-белкового сродства под действием ингибирующих факторов [55]. Другие авторы [32, 52, 70], исходя из теоретических расчетов и собственных экспериментальных данных, показали, что скорость диссоциации комплекса и количество высвобождающегося гормона в равновесных условиях достаточны для удовлетворения потребностей любой ткани, т.е. избирательная доставка гормона в ткань за счет усиленной диссоциации в специфических условиях капиллярного транзита не может играть определяющую роль.

Трудно усомниться в фундаментальном положении гипотезы активных свободных гормонов о том, что связанные в системе транспортных белков Т- и Т3 могут переходить по законам термодинамики в свободный пул и следовать далее по пути метаболизма, включающему взаимодействие со своими мембранными рецепторами. Однако эта гипотеза оставляет открытым во-

Таблица i Многокомпонентная система белков, связывающих тиреоидные гормоны в плазме человека

Белок

Концентрация в плазме1, мг/л

Молекулярная масса, кД

К.-ит5, м-‘

Ссылка

для Т4

для Tj

ТСПА

250

53

700“

100“

169.70]

Альбумин

42 000

66

5“

1“

158,70]

ТСГ

15

54

100 000

5 000

169.701

АпоА-1

1 500

28

750

-7

[17,71]

АпоА-И

350

17,5

-10

-

[22,71]

AnoA-IV

18

46

-10

[22,71|

АлоВ-100

1 000

550

25

-

[18,711

АпоС-1

50

6,6

-10

-

117,711

АпоС-П

40

8,8

-10

[17,7Ц

АпоС-Ш

130

8,8

-10

-

117,71]

АпоЕ

45

34

-10

-

[22,711

IgA

2 100

160

14

-

18.61]

IgG

12 500

150

20

-

[8,611

IgM

1 250

950

1 100

70

18.61]

* Даны средние значения из диапазонов, приведенных в литературе |61, 70, 71|.

“ Равновесный параметр для первого высокоаффинного центра связывания.

прос о специфических функциях транспортных белков, присутствующих во внеклеточных жидкостях , в процессах взаимодействия тиреоидных гормонов с компетентными клетками. Дело в том, что данная гипотеза принимает во внимание главным образом кинетические и термодинамические аспекты гормон-бел- ковых взаимодействий, определяемые микроструктурой активных центров, оставляя на втором плане специфические физико-химические свойства макромолекулы в целом и ее характерные структурные элементы. Поэтому в следующем разделе нашей статьи перед тем, кай рассмотреть данные литературы об активной роли некоторых транспортных белков во взаимодействии тиреоидных гормонов с клеткой, мы остановимся на обсуждении макромолекулярных свойств отдельных компонентов системы Т4-связывающих белков плазмы.

  1. Свойства и специфические транспортные функции многокомпонентной системы бслкоо, тоязыонющех тетсоедныс оор- мосы о елнзмс еслооскн

Долгое время считали, что плазма крови человека содержит только три белка, взаимодействующих с тиреоидными гормонами: ТСГ, ТСПА и альбумин [68, 69]. В последнее время обнаружено новое свойство известных белков — аполипопротеинов и нормальных иммуноглобулинов плазмы — способность специфически связывать тиреоидные гормоны и регулировать их поступление в ткани-мишени [4, 6, 8, 19, 22]. Выявлена также активная роль “классических” Т4-связывающих белков во взаимодействии тиреоидных гормонов с клеткой [1, 30, 41, 51]. Таким образом, в настоящее время можно говорить о системе транспортных белков плазмы, компоненты которой связаны между собой и тиреоидными гормонами общим термодинамическим соотношением и в то же время выполняют индивидуальные функции по направленной доставке одного из двух гормонов в специфические ткани.

Подвижность компонентов системы Т4-связывающих белков сыворотки человека при электрофорезе в полиакриламидном геле уменьшается в следующем ряду: ТСПА, альбумин, ТСГ, липопротеины, иммуноглобулины. Применение элекрофоретической техники высокого разрешения позволяет провести анализ распределения связанных \ треоидных гормонов в этом ряду и сделать полезные для медицинской диагностики выводы о содержании и биологической активности как отдельных транспортных белков, так и системы в целом. Мы же используем указанный порядок при описании свойств компонентов системы Т - связывающих белков сыворотки человека, чтобы избежать произвольного разделения этих белков на важные и второстепенные поскольку их биологически обоснованная иерархия будет создана, судя по темпам исследований только в ближайшем будущем. В табл. 1 приведены основные характеристики системы транспорта тиреоидных гормонов в плазме человека.

II.1. ТСПА

ТСПА имеет мол. м—53 кД и является негликозилированным тетрамером четырех идентичных субъединиц, каждая из которых состоит из 127 аминокислотных остатков [46].

Высокоочищенный ТСПА доступен в больших количествах благодаря разработке эффективных способов его выделения традиционными методами белковой химии [14] и хроматографией по сродству к тиолсефарозе и иммобилизованному ретинолсвязывающему белку [34]. Однако из-за особенностей строения своего активного центра ТСПА практически не взаимодействует с биоспецифическими сорбентами, содержащими иммобилизованный тиреоидный гормон [6, 37].

Аминокислотная последовательность ТСПА, определенная прямым секвенированием белка [46], полностью соответствует последовательности нуклеотидов в клонированной кДНК для ТСПА [50]. Кристаллографические исследования белка при высоком разрешении (1, 8 А) дали исчерпывающую информацию о структурах высокого порядка, в частности о необычно большом вкладе Р-структуры, наличии короткого а-спирального участка и о пространственной организации Т4-связывающих центров [23, 24]. ТСПА — очень стабильный белок: по данным спектроскопии ‘Н-ЯМР [66] его вторичная и третичная структуры устойчивы даже при 80°С.

ТСПА имеет два одинаковых по строению [23], но различающихся по сродству и емкости центра связывания тиреоидных гормонов с К-7-10 7 и 710s M_1 (для Т4), 1 ТО7 и 6 -10s М_1 (для Т3) при pH 7,4 и 37°С [70]. Взаимодействие Т4или Т3 с одним из центров вызывает отрицательную кооперативность связывания по другому центру, и поэтому почти все молекулы ТСПА несут только по одной молекуле гормона [69]. Время полужизни комплекса ТСПА с Т4и Т3 составляет 7,4 и1,0 с соответственно [70]. Молекула ТСПА содержит на своей поверхности четыре идентичных, независимых от Т, центра взаимодействия с ретинолсвязывающим белком (Ke~106— 107 м_|), из которых in vivo занят только один [42].

Соединения, существенно отличающиеся по структуре от йод- тиронинов, также способны взаимодействовать с Т4-ввязьшаю- щим центром ТСПА. Среди них наиболее изучены барбитал, 8- анилин-1-нафталинсульфокислота, 2,4-динитрофенол, салицилаты и пенициллин [68, 70]. Недавно [54] было проведено системное исследование различных классов химических соединений, обладающих лекарственными свойствами, которые конкурируют со [1|-Т4 за связывание с ТСПА и другим высокоаффинным транспортным белком ТСГ. Показано, что эти два белка существенно различаются по сродству к изученным лекарствам. Так, с ТСПА особенно сильно взаимодействуют соединения ряда антраниловой кислоты (потенциал связывания 175—20% относительно Т4), причем флуфенамовая кислота связывается активнее самого Т4. В отличие от связывания с ТСГ комплексообразование ТСПА с Т4в существенной степени ингибируется салицилатом и ацетилсалициловой кислотой и не подвержено влиянию дифенилгидантоина [54].

Биосинтез ТСПА происходит главным образом в печени [25], центральной нервной системе [29] и в глазу [49] млекопитающих. Время полужизни этого белка в системе кровообращения человека составляет около 2 сут. Концентрация ТСПА в нормальной сыворотке варьирует от 100 до 400 мг/л. Регуляторное действие на биосинтез ТСПА оказывают половые и анаболические стероиды, половые стероидные гормоны и наркотические вещества [69]. Концентрации ТСПА и ТСГ в сыворотке изменяются под действием этих соединений в противоположных направлениях. Эстрогены, в частности, при беременности вызывают умеренное снижение уровня ТСПА, тогда как андрогены стимулируют увеличение содержания этого белка. Пониженные концентрации ТСПА были выявлены в сыворотке людей, принимающих героин и метадон [69]. Интересной с медицинской точки зрения характеристикой метаболизма ТСПА является снижение его концентрации при некоторых нетиреоидных заболеваниях, травмах, реакции острой фазы и недостатке питания [72]. Повышенное содержание ТСПА в сыворотке наблюдается при некоторых формах рака, в частности при карциноме поджелудочной железы [62].

Относительно небольшой по размерам ген ТСПА (7300 пар оснований) состоит из четырех эксонов и отличается высокой эволюционной стабильностью. Так, выявлено 90% гомологичных структур в ТСПА человека и крысы [36]. Некоторые авторы [45] на основании данных о структурной гомологии относят ТСПА к семейству гастроинтестинальных пептидов, к которому принадлежат глюкагон, секретин, вазоактивный пептид кишечника, ингибиторный пептид желудка и глицентин.

Неизвестны генетические нарушения, проявляющиеся при полном отсутствии ТСПА у человека. Вместе с тем обнаружены шесть генетических вариантов ТСПА с заменами одного аминокислотного остатка в полипептидной цепи. Один из вариантов имеет повышенное сродство к Т4, четыре других варианта у больных с наследственной амилоидотической полинейропатией и молекулярный вариант ТСПА при системном сенильном амилоидозе обладают более низким или нормальным сродством к Т4 [13, 64, 72].

Микрогетерогенность ТСПА, не связанная с генетическими факторами и посттрансляционной модификацией, обнаружена при изоэлектрическом фокусировании сыворотки [59]. Два химических агента, не относящихся к аминокислотам, и компоненты глутатиона способны ассоциировать с ТСПА, обусловливая микрогстерогенность белка и изменение сродства кТ4 [60]. Этим же методом в присутствии 8 М мочевины выявлены два компонента в пуле высокоочищенного ТСПА, введение которых в русло крови кролика существенно увеличивает обратный ток тиреоидных гормонов из внесосудистого пространства в кровоток. По мнению авторов [48], усиление обмена тиреоидных гормонов под действием экзогенно вводимых связывающих белков может иметь терапевтическое значение при плазмаферезе и гемофильтрации в случаях тяжелого тиреотоксикоза.

В литературе [13] обсуждалась особая функция ТСПА в центральной нервной системе. Предполагалось, что ТСПА переносит связанный тиреоидный гормон в спинномозговую жидкость. Однако позднее на биологической модели in vivo было показано, что ТСПА человека, химически конъюгированный с N-бро- мацетил-[1251 ]-Т4, не проникает из плазмы в спинномозговую жидкость крысы [28]. Тем не менее весьма вероятно, что Т4, поступающий из плазмы в эпителиальные клетки хориоидного сплетения, связывается с синтезированным in situ ТСПА, образовавшийся комплекс секретируется в спинномозговую жидкость и распределяется в мозге [29].

В цикле работ Ш.С.Азимовой и соавт. [1—3] с использованием биологической модели in vivo н очищенных гомологичных ТСПА человека и крысы изучена физиологическая роль комплексов тиреоидных гормонов с ТСПА. Комплекс ТСПА — тиреоидный гормон из сыворотки проникает через плазматическую мембрану в клетки-мишени [1]. В компетентных клетках комплекс локализуется на рибосомах, митохондриях, в липидных каплях и аппарате Гольджи. В клетках, не чувствительных к тиреоидным гормонам, небольшое количество поступившего ТСПА концентрируется- в лизосомах. Исследование транслокации ТСПА в различные субмптохондриальные фракции показало, что белок из цитоплазмы проникает через внешнюю мембрану и локализуется на внутренней мембране и матриксе митохондрий [2]. Найдено также, что ТСПА поступает в клетки печени, мозга и легких, транслоцируется из цитозоля в ядро и акцентируется хроматином, не подвергаясь при этом модификациям, затрагивающим его антигенные детерминанты [3]. На основании результатов сравнительного изучения структур ТСПА и клеточных рецепторов тиреоидных гормонов, а также данных о транслокации через плазматическую мембрану и внутриклеточном транспорте ТСПА сделан вывод о том, что ТСПА представляет собой базовую часть истинного рецептора тиреоидных гормонов.

По мнению авторов [55], механизм проникновения Т4 в орган может состоять либо в диссоциации комплекса под действием неконкурентного ингибитора в микроциркуляции печени, либо во взаимодействии ТСПА со специфическим рецептором на внешней поверхности клеточной мембраны.

С-Divino и G.Schussler [30] показали, что ТСПА, добавленный в разбавленную сыворотку или раствор альбумина человека, усиливает поглощение Т4 в культуре клеток гепатомы НЕр G2 человека. Это побудило авторов [30] изучить возможность прямого взаимодействия ТСПА со специфическими связывающими центрами на поверхности клеток НЕр G2. Найдено, что связывание ТСПА с клетками данной линии зависит от температуры и времени, причем термодинамическое равновесие наступает через 2 ч инкубации. Анализ взаимодействия по методу Скетчарда выявил один класс эквивалентных центров связывания с К„~5 нМ при 4°С и 14 нМ при 37°С. После протеолитического разрушения ТСПА, связанного на поверхности клеточной мембраны, определили, что 88% белка иитернализусгся клеткой. Насыщение связывающих центров ТСПА гормоном усиливало захват и интернализацию белка. Т4 и негормональные лиганды (салицилат и синтетический флавон EMD 21388) стимулировали поглощение нормального ТСПА и его молекулярного варианта с точечной заменой в положении 30 полипептидной цепи клетками астроцитомы и гепатомы [73]. Сделан вывод о том, что взаимодействие между ТСПА и его клеточным рецептором является частью механизма активного транспорта Т4 в клетку и может обусловливать дополнительные метаболические эффекты гормона.

II.2. Альбумин

Альбумин человека состоит из одной негликозилированной полипептидной цепи с мол. м. 66 кД. Известна последовательность 548 аминокислотных остатков этого белка. Из них 48% составляют (-структуру, а 15% образуют а-спиральные участки. Охарактеризованы три главных домена в полипептидной цепи с повторяющимися аминокислотными последовательностями. В русле крови альбумин транспортирует многие низкомолекулярные физиологически активные вещества, в том числе жирные кислоты, аминокислоты, билирубин, ионы металлов, стероиды и йодтиронины. Ген альбумина расположен на длинном плече хромосомы 4. Из 15 эксонов гена два кодируют сигнальный пептид из 18 аминокислотных остатков и пропептад из 6 остатков [58]. Альбумин продуцируется печенью в 25 и 1250 раз более интенсивно, чем соответственно ТСПА и ТСГ. Его концентрация в нормальной сыворотке составляет в среднем 4200 мг/мл, а время полужизни в кровообращении — 13 сут. Содержание альбумина в сыворотке умеренно снижается при циррозе печени, нефрозе, воспалительных реакциях, травмах [70]. В одном [58] из множества обзоров, посвященных альбумину, можно найти полные сведения о его структуре, физико-химических свойствах, молекулярной генетике и метаболизме. Мы же остановимся далее на описании свойств комплексов альбумина с тиреоидными гормонами.

Альбумин содержит один относительно высокоаффинный центр связывания йодтиронинов с Ка 5 46s М~' (для Т4) и Г ■105 М“‘ (для Т,), а также от 2 до 6 центров низкого сродства с Ко 5 ТО4 М-1 (для Т4) и 5 ТО3 М-‘ (для Т3) [70]. Связывание тиреоидных гормонов с альбумином ингибируется жирными кислотами и другими органическими анионами [70], а также ЫаС1 в физиологических концентрациях [77].

В дополнение к “нормальным” центрам связывания Т4 при генетических повреждениях молекулы альбумина обнаружен центр с Ка 7 10е М_‘. Этот аналог в небольших количествах присутствует в нормальной сыворотке, и его концентрация резко повышается при дисальбуминемической гипертироксинемии [42]. При этом заболевании около 25% общего альбумина проявляет повышенное сродство к Т4, что приводит к существенному увеличению количества гормона, переносимого этим транспортным белком [42]. Важное для медицинской диагностики аномальное связывание Ри1]-Т4 с альбумином легко выявляется после ингибирования ТСПА барбиталом и инактивации ТСГ обработкой сыворотки при pH 3,0 [12].

О специфической роли альбумина в транспорте тиреоидных гормонов в ткани сообщалось лишь в нескольких публикациях [47,51, 81]. Было высказано предположение, что альбумин может опосредовать усиленное поглощение связанных с ним йод- тироиинов печенью за счет взаимодействия белка со своим рецептором на гепатоцитах [81]. В другой работе [47] отмечают факт интернализации комплекса Т3—альбумин периферическими лейкоцитами человека. С.Мепбс1 и соавт. [51] в экспериментах на крысах показали, что 4% раствор альбумина человека, не содержащий ТСПА и ТСГ, при введении вместе со [ |г55]-Т, через портальную вену в печень обеспечивает равномерное распределение меченого гормона по всем клеткам органа, тогда как при перфузии печени не связанным с альбумином [ч51]-Т4 весь гормон захватывается перипортальными клетками.

П.3. ТСГ

ТСГ имеет мол. м. 54 кД и в отличие от ТСПА и альбумина является гликопротеином, содержащим 23% сахаров по массе.

Современные эффективные методики выделения и очистки ТСГ основаны на лигацд-аффинной хроматографии [6, 37]. Существует международный стандарт ТСГ с чистотой более 99% (препарат 88/638) [26].

Полная первичная структура ТСГ была выведена на основании результатов секвенирования двух клонов комплементарной ДНК [35]. Сделан вывод, что секретируемый зрелый белок содержит 395 аминокислот, составляющих молекулярную массу полипептидного компонента 44180. Выявлено шесть потенциальных мест гликозилирования в положениях 16, 79, 145, 175, 233 и 391, из которых, как извести [82‘, четыре содержат оли- госахаридные цепи, присоединенные N-гликозидными связями к остаткам аспарагина. Сравнение аминокислотных последовательностей ТСГ и спектра белков с известными первичными структурами неожиданно выявило высокую степень гомологии с представителями семейства сериновых антипротеаз (серпинов): с^-антихимотрипсином (58% гомологии),а,-антитрипсином (53%) и антитромбином III (27%) [35]. Интересно, что к тому же семейству относится и транскортин человека [40], хотя ни ТСГ, ни транскортин не обладают свойствами антипротеаз. Ген ТСГ расположен в средней части длинного плеча хромосомы X между полосами Xq 11 и Xq 23 [79]. Кодирующая область гена ТСГ состоит из 1245 пар оснований, организованных в 4 эксона [35]. Сведения о вторичной структуре ТСГ получены на основании характеристик кругового дихроизма и флюоресцентных свойств белка [38, 74]. ТСГ содержит примерно равные доли а-спирали и [3-структуры. Расчеты термодинамических параметров плавления третичной структуры ТСГ по данным микрокалориметрии показывают, что в ТСГ присутствуют два близких по пространственной организации домена.

Оба тиреоидных гормона и их структурные аналоги связывают по одному центру в молекуле ТСГ. При 37°С и pH 7,4 значения К составляют 1 1010 и 5 -10® М-1 для Т4 и Т3 соответственно [70]. Несмотря на очень высокую энергию связывания, прибл!гжающуюся по порядку к энергии химических реакций, взаимодействие является обратимым. Диссоциация комплексов ТСГ с тиреоидными гормонами протекает достаточно быстро: время полужизни равно 4 и 39 с соответственно для Т, и Т4 [70|. Т4 имеет структуру наиболее предпочтительного лиганда для ТСГ. Тем не менее этот белок способен связывать, хотя и с невысоким сродством, многие соединения, которые имеют лишь частичное структурное сходство с Т4. Так, сообщалось о взаимодействии с Т4-связывающим центром ТСГ лекарственных препаратов 5,5‘-дифенилгидантоина, фенклофенака, диазепама, салицилатов [69]. Кроме того, ТСГ связывает 8-анилин-1-нафталинсульфонат, что используется в исследованиях комплексообразования методами флюоресцентной спектроскопии и для вытеснения Т4 из комплекса с ТСГ при иммуноанализе [70].

ТСГ синтезируется в печени [13]. Его концентрация в нормальной сыворотке составляет 15—30 мг/л. Время полужизни ТСГ в кровообращении 5 дней [63]. Ряд природных и синтетических препаратов способны увеличивать (эстрогены, героин, метадон, 5-фторурацил, перфеназин, клофибрат) или уменьшать (андрогены, глюкокортикоиды, анаболические стероиды) содержание ТСГ в организме человека [69]. Высокие концентрации ТСГ в сыворотке обнаружены при остром вирусном гепатите, хроническом активном гепатите и первичном циррозе печени [72]. Поскольку повышенные концентрации ТСГ были выявлены у 92% больных с гепатоклеточной карциномой, то его можно считать надежным, хотя и неспецифическим, онкомаркером [78]. Скорость продуцирования этого белка снижается как при гипотиреозе, так и при тяжелом тиреотоксикозе. Клиренс замедляется при состояниях с аномально низкими концентрациями тиреоидных гормонов в плазме и усиливается при тиреотоксикозе. Этот сложный эффект тиреоидных гормонов обусловливает значительные колебания концентраций ТСГ в плазме людей с нарушениями функции щитовидной железы [70].

В последнее время интенсивно изучаются генетические варианты ТСГ. На молекулярном уровне установлены три типа альтераций гена ТСГ: делеция одного нуклеотида, замещение одного нуклеотида и замещение двух нуклеотидов [44]. Эти аномалии гена проявляются как наследственное полное отсутствие ТСГ в плазме человека или в виде генетических вариантов с заменами соответственно одного или двух аминокислотных остатков, пониженным сродством к тиреоидным гормонам, измененными зарядовыми свойствами и повышенной термолабильностью [65].

Из девяти описанных в литературе молекулярных вариантов ТСГ три имеют общую замену лейцина на фенилаланин в положении 283 наряду со специфичными для них мутациями. Такая же замена в положении 283 характерна и для ТСГ, обладающего всеми свойствами нативного белка [44]. Это позволяет говорить о полиморфизме ТСГ по кодону 283. Такой полиморфизм ТСГ характерен для всех этнических групп населения [44]. Вместе с тем можно сделать неблагоприятный прогноз о том, что замещение в положении 283 в принципе может быть важным для появления иных специфических мутаций гена ТСГ.

Олигосахаридные цени ответственны за микрогетерогенность ТСГ и в существенной степени определяют скорость выведения этого гликопротеина из кровообращения [13]. В процессе клиренса особенно важны концевые сиаловые кислоты. Десиали- рованный ТСГ с экспонированными остатками галактозы имеет очень высокую скорость клиренса за счет быстрого поглощения гепатоцитов поверхностными рецепторами, способными связывать многие асиалогликопротеины [63].

Особую роль углеводный компонент играет в функционировании ТСГ при беременности. Гиперэстрогенемия, характерная для этого физиологического состояния организма, влияет на углеводную структуру ТСГ, что в свою очередь приводит к уменьшению на 15% скорости клиренса ТСГ [9]. Этим, однако, нельзя объяснить двукратное повышение содержания ТСГ при беременности [69]. По-видимому, как усиленный синтез, так и замедленный клиренс определяют повышенные концентрации этого гликопротеина в сыворотке беременных женщин.

При хроматографии чистого ТСГ из сыворотки ретроплацен- тарной (послеродовой) крови на конканавалин А-сефарозе гликопротеин разделяется на две фракции, одна из которых (ТСГ- 1), составляющая около 10% от общей массы, не взаимодействует с иммобилизованным лектином и элюируется в свободном объеме, а другая адсорбируется на аффинной колонке [10, 75]. Установлено, что ТСГ-1 является характерным для беременности структурным вариантом ТСГ с особым строением углеводного компонента и специфической микрогетерогенной структурой. В то же время ТСГ-1 не отличается от ТСГ нормальной сыворотки по аминокислотному составу, вторичной и третичной структурам полипептидной цепи, а также по строению и свойствам гормонсвязывающего центра. Изучение в модельных системах in vivo клиренса вариантов ТСГ показало, что ТСГ-1 и характерная для беременности высокосиалированная фракция ТСГ [9] выводятся из кровообращения крысы в 1,5—2,5 раза медленнее, чем вариант, соответствующий ТСГ нормальной сыворотки.

Разработана радиоиммунологическая система для количественного определения ТСГ-1 в сыворотке крови человека. Найдено, что в сыворотке крови здоровых доноров доля ТСГ-1 составляет в среднем 1,2% от уровня общего ТСГ, к сроку разрешения от беременности эта величина повышается до 8 % в сыворотке и 9,5% в амниотической жидкости и медленно снижается после родов, достигая через 5 мес значения, характерного для нормы [5]. По данным двух групп авторов [9], при злокачественных новообразованиях различной локализации и нарушениях функции печени доля ТСГ-1 составляет 3—10%.

Таким образом, ТСГ-1 является минорным компонентом плазмы крови человека в норме. Повышение концентрации общего ТСГ, вызываемое различными ненаследственными причинами, сопровождается увеличением доли ТСГ-1. Высказано предположение, что биосинтез структурного варианта ТСГ, содержащего только трехантенные олигосахаридные цепи со специфической микрогетерогенной структурой, представляет собой один из способов физиологической адаптации к увеличению потребности организма в ТСГ. Если возникает необходимость в увеличении концентрации ТСГ в крови, то реакция синтезирующего органа может состоять в избирательном усилении биосинтеза долгоживущего структурного варианта за счет изменения механизмов посттрансляционного гликозилирования полипептидной цепи.

Биологический смысл обсуждавшейся выше структурной гомологии между ТСГ и серпинами рассматривается в работе [57]. Ингибиторы сериновых протеаз в активной форме имеют напряженную (S) конформацию. В этой конформации у а -антитрипсина действию протеазы доступна петля, в которой надлежащим образом сближены остатки активного центра Met-358 и Ser-359. Под действием фермента петля разрывается и молекула антипротеазы претерпевает необратимый переход в расслабленную (R) конформацию, в которой эти два аминокислотных остатка удалены друг от друга. Такой конформационный переход сопровождается существенным увеличением термостабильности макромолекулы. По данным авторов [57], ТСГ и транскортин, имея родственную а.-антитрипсину третичную структуру, расщепляются эластазой нейтрофилов и приобретают повышенную тепловую устойчивость. При этом у транскортина в отличие от ТСГ существенно снижается сродство к лиганду. Таким образом, в случае комплекса транскортина с кортизолом S — R-переход in vivo с участием компетентных лейкоцитов при воспалительной реакции может приводить к высвобождению гормона и обеспечению доставки повышенных количеств глюкокортикоида к месту воспаления. Хотя у ТСГ и не выявлено изменений сродства к лиганду в результате конформационного S— R-персхода, возможность сайтспецифичного ферментативного расщепления этого белка может реализовываться в ходе взаимодействий с клетками-мишенями направленного транспорта тиреоидного гормона.

К.Hashizume и соавт. [41]впервые высказали экспериментально обоснованное предположение о том, что ТСГ выполняет транспортную функцию не только в сыворотке крови, но и на уровне плазматической мембраны клетки. В их работе изучено взаимодействие in vitro между периферическими моноядерными клетками человека и комплексами [12'1 |-Т4 с интактным и дсси- ащроввнным ТСГ. Найдено, что связанный с белком гормон способен проникать в клетку. Процесс поглощения комплекса клеткой зависит от температуры, времени инкубации и состояния углеводных цепей связывающего белка. Механизм трансмембранного переноса может включать интернализацию тройного комплекса Т, — ТСГ — рецептор ТСГ.

Важной функцией ТСГ при беременности может быть его участие в переносе тиреоидных гормонов из плазмы матери в кровообращение плода [31]. Т, играет ключевую роль в раннем нейрогенезе, и ТСГ может опосредовать гормональную связь между матерью и плодом путем регуляции трансплацентарного переноса Т, [31, 33]. В этой связи особую функцию в фетопла- центарной системе может выполнять характерный для беременности структурный вариант гликопротеина ТСГ-1, которым обогащен общий ТСГ, обнаруженный в амниотической жидкости [5].

  • Аполипопротеины

Аполипопротеины составляют один из самых представительных классов белков плазмы крови человека. Благодаря своей амфифильной структуре эти белки обладают способностью связывать и тем самым обеспечивать солюбилизацию липидов в водном окружении плазмы. В известном обзоре [71] подробно описаны структурно-функциональные свойства и биомедицинское значение аполипопротеинов.

Ранние наблюдения показали, что Т, и Т3 способны ассоциировать с липопротеидными частицами плазмы человека [43]. Позже с помощью аффинной хроматографии плазмы на Т,-сефарозе [11,39] и фотоаффинного ковалентного мечения липопротеинов высокой, низкой и очень низкой плотности (соответственно ЛПВП, ЛПНП и ЛПОНП) [|251]-Т4 [17, 18, 22, 39] было найдено, что апоА-I, апоА-П, anoA-IV, апоВ-100, апоС-1, апоС-П, апоС-Ш и апоЕ являются Т,-связывающими компонентами липопротеидных частиц. На основании результатов кинетических и равновесных экспериментов [7, 17, 18, 39] сделан вывод о том, что связывание тиреоидных гормонов с аполипопротеинами является зависимым от времени, обратимым, насыщаемым и чувствительным к специфическим ингибиторам процессом взаимодействия со структурно обособленным центром в белке, комплементарным лиганду. Число таких центров в макромолекуле варьирует от I в апоА-1 [21] до 3 в апоВ-100 [18, 20]. Из изученных аполипопротеинов только апоА-I и его липидный комплекс апоА-I—ЛПВП проявляют достаточно высокое сродство к гормону (Ка 107 — 108 М_|) [7, 17].

Известно, что многие типы клеток человека имеют поверхностные рецепторы апоВ-100 и апоЕ, участвующие в доставке холестерина в клетку путем связывания и последующей интернализации комплекса ЛПНП — рецептор [71]. Па основе этого механизма был создана гипотеза о физиологической роли комплекса тиреоидного гормона с ЛППП, которая недавно получила экспериментальную проверку [19]. Авторы изучили поглощение [|251]-Т3 и [ШТ, фибробластами кожи человека, выращенными в присутствии обедненной липопротеинами сыворотки. При добавлении в среду фракции ЛПНП, апоВ-100 или апоЕ в концентрациях, достаточных для связывания гормона, но не превышающих емкость клеточного рецептора, наблюдали увеличение на 27—63% начальной скорости поглощения и количества поглощенного Т, (но не Т3) в состоянии равновесия. Этот эффект отсутствовал у клеток с дефицитом рецепторов (наследственная гиперхолестеринемия, низкая экспрессия рецепторов при избытке холестерина в среде). Специфический характер действия ЛПНП и соответствующих аполипопротеинов подтверждался тем фактом, что другие Т,-связывающие белки, наоборот, пропорционально своим концентрациям в среде снижали количество Т,, проникающего в клетку. Авторы [19] предположили, что существуют два пути транспорта Т, в фибробласты. Первый — через центры связывания свободного гормона на клеточной поверхности, второй, дополнительный путь, недоступный для Т3, — через рецепцию комплекса Т, — ЛПНП и интернализацию последнего.

  • Иммуноглобулины

Иммуноглобулины образуют обширное семейство структурно родственных белков, которые состоят из двух пар полипеп- тидных цепей, удерживаемых дисульфидными мостиками и нековалентными связями. Пять таких стандартных четырехцепочных фрагментов, соединенных J-цепыо, присутствуют в IgM. Тяжелые цепи, включающие около 450 аминокислотных остатков, по своему строению разделяются на пять классов, что лежит в основе классификации иммуноглобулинов: IgG, IgA, IgM, IgD и IgE; Кроме того, существуют 4 подкласса IgG и 2 подкласса IgA. Легкие цепи (около 214 остатков) являются общими для всех классов иммуноглобулинов, хотя и могут различаться соотношением типов К и X. В семейство иммуноглобулинов входят также белки, которые не обладают активностью антител. Это миеломные белки, свободные субъединицы иммуноглобулинов и белки Бенс-Джонса. Подробные сведения о структурных, функциональных и генетических характеристиках иммуноглобулинов можно почерпнуть из авторитетного источника [61] и соотнести с излагаемыми ниже гормонсвязывающими свойствами этих гликопротеинов.

Впервые уникальный клинический случай связывания Т, с фракцией иммуноглобулинов сыворотки больного карциномой щитовидной железы был описан J.Robbins и соавт. [67]. В последовавших затем многочисленных наблюдениях и системных исследованиях охарактеризованы приобретенные изменения в системе транспорта тиреоидных гормонов у человека, которые заключаются в появлении аномальных связывающих белков, аутоантител, относящихся к иммуноглобулинам различных классов [16]. Относительное число случаев (частотность) обнаружения аутоантител к тиреоидным гормонам при массовых обследованиях взрослого населения не превышает долей процента, но при тиреоидных заболеваниях такие аутоантитела присутствуют у 5% больных [16].

В ходе работ по изучению “патологического” связывания гормонов щитовидной железы с аномальными белками были полу- чены.отдельные сведения о взаимодействии Т, и Т3 с нормальными иммуноглобулинами человека. Так, при оценке методики детекции анти-Т, (Т3) аутоантител в очищенной фракции иммуноглобулинов нормальной сыворотки отмечалось “неспецифи- чсское” связывание Т, и Т3 с нормальными IgG [27]. При экспериментальной проверке предположения об “иммуноглобулиновой” природе ингибитора связывания тиреоидных гормонов в сыворотке были получены данные, косвенно свидетельствующие о Т,-связывающих свойствах нормального IgM человека [15].

В ходе системного исследования Т4-связывающих белков плазмы человека с помощью нового методического подхода, основанного на использовании лиганд-аффинной хроматографии, было показано, что постоянными компонентами белковой смеси, биоспецифически выделяемой из рстроплацентарной и нормальной сывороток человека с помощью Т,-сефарозы, являются IgG и IgM [6]. Оставалось неясным, являются ли Т-ссвязы- вающие иммуноглобулины аутоантителами, т.е. аномальными белками, которые появляются при достаточно редких патологических состояниях, или же они относятся к нормальным транспортным белкам плазмы.

С целью ответа на этот вопрос изучены кинетические и равновесные характеристики взаимодействия Т, с IgA, IgG, IgM и белками Бенс-Джонса, выделенными в чистом виде из сыворотки крови человека[8]. Найдено, что комплексообразование Т, с иммуноглобулинами является зависимым от времени, обратимым, насыщаемым и чувствительным к специфическим ингибиторам процессом. Необходимым и достаточным для связывания Т, компонентом молекулярной структуры иммуноглобулина является, по-видимому, L-цепь типа К или X. Ковалентное присоединение Н-цепи может резко увеличивать сродство к тиреоидному гормону (ц-цепь в IgM) или изменять чувствительность участка связывания к химическим агентам и pH среды (ц-цепь в IgM, у- цепь в IgG). Экспериментальные данные показывают, что Т,- связывающий IgM не принадлежит к /‘патологическому” типу белков — анти-Т, аутоантителам: зависимость реакции связывания Т, от физико-химических условий среды является типичной для нормальных траспортных белков; частотность обнаружения Т,-связывающего IgM в случайно выбранных индивидуальных пробах сыворотки здоровых людей составляет 100%; комплекс IgM — Т, структурно отличается от комплекса антиген — антитело, так как не способен взаимодействовать с первым компонентом комплемента. Авторы [8] считают, что специфические Т,-связывающие свойства иммуноглобулинов нормальной сыворотки могли долгое время оставаться нераскрытыми из-за недостатков традиционного метода анализа, который не способен обнаружить слабые проявления Т,-связывающей активности этих белков в физиологических жидкостях, содержащих эндогенный ингибитор С1~ и (или) экзогенный ингибитор 8-анм- лин-1-нафталинсульфокислоту.

Особая биологическая роль IgM выявлена в ходе экспериментов in vitro с использованием модельной системы тиреоидный гормон — связывающий белок — плазматическая мембрана микроворсинок сннцитиотрофобласта человека [,]. Важно отметить, что выбранная в качестве объекта исследования ткань формирует поверхность контакта между материнской кровью и плодом, является компетентной в отношении тиреоидных гормонов [11] и содержит поверхностные рецепторы иммуноглобулинов [61). В этой модельной системе очищенные ТСПА, альбумин, апоА-I, ТСГ, IgG и IgM при концентрациях, близких к Kj их комплексов с тиреоидными гормонами, оказывали пропорциональное концентрациям ингибирующее действие на свя-

Таблица 2

Активная роль лиганд-бслковых комплексов в трпспорте тиреоидных гормонов в клетки некоторых тканей

Бел ox

Лиганд

Клстке

Механизм

Ссылка

ТСПА

т„т4

Гепатоциты in vivo НЕр G2 in vitro

Рецепция и интернализация комплекса

11.301

Альбумин

т4

Гепатоциты in vivo

Равномерное распределение лиганда по всем клеткам органа

151,531

ТСГ

т4

Лейкоциты in vitro

Рецепция и интернализация комплекса

141)

АпоВ-100

Т4

Фибробласты in vitro

То же

H9J

IgM

Т,

Плазматические мембраны плациенты in vitro

Увеличение числа Т3-связывающих мест за счет рецепции IgM мембранами

141

зывание [1]-ТЭ или [1]-Т4 с мембранным рецептором тиреоидных гормонов. Зависимость мембранного связывания 1Ц- Т4 от концентрации IgM в системе носила типичный для всех изученных белков характер. В случае Т3 такая зависимость была уникальной для IgM и включала фазу стимулирующего действия IgM (10-11—10~’ М) и фазу ингибирования (10~*—10~’М). В присутствии 30 пМ IgM на 75% увеличивалась концентрация мембранных мест связывания Т3 при снижении Ка в 2,2 раза. В отдельном эксперименте показано [5] , что IgM специфически взаимодействует с двумя типами связывающих центров на плазматических мембранах плаценты с Ка<1)=5,0 -10’ М_|, В =34 фмоль/мг общего мембранного белка и Ка( =2,7 10' М-1, Вгоах(2)=2,0 пмоль/мг мембранного белка. Авторы [4] считают, что стимулирующий эффект IgM обусловлен увеличением числа Т3- связывающих мест на мембранах микроворсинок за счет образования комплекса IgM с его мембранным рецептором, проявляющего повышенную Т3-связывающую активность.

В табл.2 обобщены специфические транспортные функции Т4-связывающих белков плазмы человека.

  • Заключение

Система транспортных белков, обратимо связывающих более 99% общей массы Т4 и Т3 в плазме крови человека, включает ТСПА, альбумин, ТСГ, апоА-I, апоА-Н, anoA-IV, апоВ-100, апоС-I, апоС-П,апоС-Ш, апоЕ, IgM, IgYj и IgA. В этот широкий спектр белков входят и их структурные варианты, отличающиеся элементами химического состава, некоторыми физическими свойствами и особенностями взаимодействия с йодтирони- нами. По величине сродства к тиреоидным гормонам связывающие белки можно условно разделить на три группы: низкоаффинные (альбумин, большинство аполипопротеинов, IgG и IgA; К ~105 —106 М~‘), среднеаффинные (ТСПА и апоА-1; К -10’ — 10* М_|) и высокоаффинные (ТСГ и его варианты; Ка —10’ — 10'° М“'). Существуют эффективные методы выделения и очистки этих белков. Известны строение генов, параметры биосинтеза и клиренса, первичная, вторичная и третичная структуры полипептидных цепей, физические свойства молекул.

Т4-связывающие белки плазмы не обладают генетическим родством, различаются по химическому строению и физическим свойствам и выполняют различные основные или дополнительные биологические функции. Их объединяет участие в термодинамическом равновесии со свободными гормонами и наличие структурно обособленного активного центра, в большей или меньшей степени комплементарного структуре йодтирони- на.

Гипотеза о свободных гормонах объясняет и количественно описывает все клеточные эффекты Т4 и Т3 на основе концентрации несвязанных гормонов в плазме, а связывающим белкам отводит резервную, буферную и гормонвысвобождающую функции. Исследования последн!о< лет выявили активную роль транспортных белков и их клеточных рецепторов в механизмах взаимодействия тиреоидных гормонов с компетентными тканями: комплекс Т4 — ТСГ интернализуется периферическими моноя- дерными клетками, Т3 и Т4, связанные с ТСПА, траислоциру- ются через плазматическую мембрану и распределяются между субклеточными фракциями печени и других органов, апоА-I избирательно усиливает поглощение Т4 фибробластами, a IgM стимулирует связывание Т3 с плазматическими мембранами плаценты.

Понимание фундаментальных основ функционирования многокомпонентной системы Т4-связывающих белков плазмы важно для диагностики заболеваний человека и правильного применения фармакологических средств, которые могут влиять на комплексообразование тиреоидных гормонов с танспортны- ми белками.

Поскольку многие компоненты системы Т4-связывающих белков участвуют в целом ряде хорошо изученных физиологических процессов, казалось бы, не имеющих прямого отношения к метаболизму йодтиронинов, интересно выяснить влияние связанного тиреоидного гормона на эти процессы.

В целом создается впечатление, что каждый отдельный Т4- связывающий белок может выполнять специализированную функцию по доставке одного из двух тиреоидных гормонов в специфическую ткань. Разнообразие транспортных белков и компетентных тканей дает широкий простор исследованиям, результаты которых должны появиться уже в ближайшем будущем.

Список литературы

1. Азимова Ш.С., Умарова Г.Д., Петрова О.С. и др. // Биохимия. - 1984. - Т. 49, № 8. - С. 1350 - 1356.

2. Азимова Ш.С., Умарова Г.Д., Петрова О. С. и др. // Биохимия. - № 9. - С. 1478 - 1485.

3. Азимова Ш.С., Умарова Г.Д., Тухтаев К.Р., Абдукаримов А.Р. // Биохимия. - № 10. - С. 1640 - 1646.

4. Карпыза Е.И., Киклевич И.Е., Ермоленко М.Н., Свиридов О.В. // Биохимия. — 1993. — Т. 58, № 2. — С. 285 — 293.

5. Свиридов О.В., Ермоленко М.Н., Будникова Л.П., Карпыза И.Е. // Пробл. эндокринол. — 1989. — № 2. — С. 48 — 52.

6. Свиридов О.В., Ермоленко М.Н., Пышко Е.С. и др. // Биохимия. - 1990. - Т. 55, № 2. - С. 329 - 337.

7. Свиридов О.В., Пышко Е.С., Ермоленко М.Н., Стрельченок О.А. // Там же. - № 11. - С. 2002 — 2010.

8. Свиридов О.В., Ермоленко М.Н. // Там же. —1994. — Т. 59, № i. - С. 78-87.

9. Ain К.В., Morí Y., Refetoff S. // J. clin. Endocr. Metab. — 1987. - Vol. 65, N 4. — P. 689-696.

10. Ain K.B., Refetoff S. // Ibid. - 1988.- Vol. 66, N 5. - P. 1037-1043.

11. Alderson R., Pastan I., Cheng S.Y. // Endocrinology. — 1985. - Vol. 116, N 6. - P. 2621-2630.

12. Arevalo G. // Clin. Chem. - 1988. -Vol. 34, N 4. - P. 705- 708.

13. Bartalena L. // Endocr. Rev. - 1990. - Vol. 11, N 1. - P. 47-63.

14. Bashor M.M., Hewett J., Lackey A. et al. // Prep. Biochem. — 1987. - Vol. 17, N 3. - P. 209-227.

15. Benvenga S., Costante G., Melluso R. et.al. // Acta endocr. (Kbh.). - 1983. - Vol. 103, N 1. - P. 46-52.

16. Benvenga S., Trimarchi F., Robbins J. // J. Endocr. Invest. — 1987. - Vol. 10. - P. 605-619.

17. Benvenga S., Cahnmann H.J., Gregg R.E., Robbins J. // J. clin. Endocr. Metab. — 1989. — Vol. 68, N 6. — P. 1067— 1072.

18. Benvenga S., Cahnmann H.J., Gress R.E., Robbins J. // Biochimie. - 1989. - Vol. 71. - P. 263-268.

19. Benvenga S., Robbins J. // Endocrinology. — 1990. — Vol. 126, N 2. - P. 933-941.

20. Benvenga S., Cahnmann H.J., Robbins J. // Ibid. — Vol. 127, N5. - P. 2241-2246.

21. Benvenga S., Cahnmann H. J., Robbins J. Ц Ibid. — 1991. — Vol. 128, N 1. - P. 547-552.

22. Benvenga S., Cahnmann H.J., Rader D. et al. // Ibid. — 1992. - Vol. 131. N 6. - P. 2805-2811.

23. Blake C.C.F., Galley S.J. // Nature. - 1977. - Vol. 268. - P.115-120.

24. Blake C.C.F., Geisow M.J., Oalley S.J. et al. //J. molec. Biol.- 1978. - Vol. 121. - P. 339 356.

25. Bridges C.D.B., Peters T., Smith J.E. et al. // Fed. Proc. — 1986. - Vol. 45, N 9. — P. 2291-2303.

26. Bristow A.F., Gaines-Das R.E., Buttress N. et al. // Clin. Endocr. - 1993. - Vol. 38, N 4. - P. 361-366.

27. Calzi L.L., Benvenga S., Battiato S. et al. // Clin. Chem. — 1988. - Vol. 34, N 12. - P. 2561-2562.

28. Chanoine L.R., Alex S., Fang S.L. // Annual Meeting of the Endocrine Society, 73-rd: Abstracts. — Washington, 1991. — P. 132.

29. Dickson W.R., Aldred A.R., Menting J.G.T. et al. // J. biol. Chem. - 1987. - Vol. 262, N 29. - P. 13907- 13915.

30. Divino C.M., Schussler G.C. // Ibid. - 1990. - Vol. 265, N 3. - P. 1425-1429.

31. Ekins R. // Lancet. - 1985. - Vol. 1. — P. 1129-1132.

32. Ekins R., Edwards P.R. // Amer. J. Phisiol. — 1988. — Vol. 255. - P. E403-E409.

33. Ekins R. U Endocr. Rev. - 1990. - Vol. 11, N 1. - P. 5- 46.

34. Fex G., Laurell C.-B., Thulin E. // Europ. J. Biochem. — 1977. - Vol. 75, N 1. - P. 181-186.

35. Flink I.L., Bailey T.J., Gustafson T.A. et al. // Proc. nat. Akad. Sei. USA. - 1986. - Vol. 83. — P. 7708-7712.

36. Fung W.-P., Thomas T., Dickson P.W. et al. //J. biol. Chem. - 1988. — Vol. 263. - P. 480- 488.

37. Gershengom M. C., Cheng S.-Y., Lippoldt R.E. et al.// Ibid. - 1977,- Vol. 252, N 23. - P. 8713-8718.

38. Gershengom M.C., Lippoldt R.E., Edelhoch ff., Robbins J.U Biochemistry. - 1977.- Vol. 252, N 23. - P. 8719-8723.

39. Grimaldi S., Bartalena L., Carlini F., Robbins J. // Endocrinology. - 1986. - Vol. 118, N 6. - P. 2362—2369.

40. Hammond G.L. // Endocr. Rev. — 1990. — Vol. 11, N1.— P. 65-79.

41. Hashizume K., Sakurai A., Miyamoto T. et al. // Endocr. Jap. - 1986. - Vol. 33, N 5. - P. 665-674.

42. Hennemann G., Docter K. // The Thyroid Gland / Ed. M.A. Greer. - New York, 1990. - P. 221-231.

43. Hoch H., Lewallen C. G. // J. clin. Endocr. Metab. — 1974. - Vol. 38, N 4. - P. 663- 673.

44. Janssen O.E., Bertenshaw R., Takeda K. et al. //Trends Endocr. Metab. - 1991. - Vol. 2. - P. 104 -114.

45. Jornvall H., Carlstrom A., Petterson T. et al. // Nature. — 1981. — Vol. 291. - P. 261-263.

46. Kanda Y,Goodman D.S., Canfield R.E., Morgan F.J. // J. biol. Cem. - 1974. - Vol. 249. - P. 6796-6805.

47. Kostrouch Z., Raska I., Felt V. et al. // Experientia (Basel). - 1987,- Vol. 49, N 10. - P. 1119-1120.

48. Luckebach C., Wahl R., Kallee E. // Europ. J. clin. Chem. clin. Biochem. - 1992. - Vol. 30, N 7. - P. 387 -390.

49. Marione R.L., Herbert J., Dwork A., Shon E.A. // Biochem. biophys. Res. Commun. — 1988. — Vol. 151, N 2. — P. 905— 912.

50. Mita S., Maeda S., Shimada K., Araki S. // Ibid. — 1984. — Vol. 124. - P. 558-568.

51. Mendel C.M., Weisiger R.A., Jones A.L., Cavalieri R.R. // Endocrinology. — 1987. — Vol. 120, N 5. — P. 1742—1749.

52. Mendel C.M., Cavalieri R.R., Weisiger R.A. // Ibid. — 1988. - Vol. 123, N 4. - P. 1817-1824.

53. Mendel C.M. ¡/ Endocr. Rev. — 1989. — Vol. 10, N 3. — P. 232—274.

54. Munro S.L., Lim C.F., Hall J.G. et al. // J. clin. Endocr. Mctab. - 1989. - Vol. 68, N 6. - P. 1141 -1147.

55. Pardridge W.M., Premachandra B.M., Fierer G. // Amer. J. Phisiol. - 1985. - Vol. 248. - P. G545-G55O.

56. Pardridge W.M. // Ibid. - 1987. - Vol. 252. - P. E157 - EI64.

57. Pemberton P.A., Stein P.E., Pepys M.B. et al. // Nature. — 1988. - Vol. 336. - P. 257-258.

58. Peters T.Jr. // Advanc. Protein Chem. — 1985. — Vol. 37. — P. 161- 246.

59. Petterson T., Carlstrom A., Jornvall H. // Biochemistry. — 1987. - Vol. 26, N 14. - P. 4578-4583.

60. Petterson T.M., Carlstrom A., Ehrenberg A., Jornvall H. // Biochem. biophys. Res. Commun. — 1989. — Vol. 158, N 4. — P. 341-347.

61. Putnam F.W. // The Plasma Proteins / Ed. F. W. Putnam. — 2-nd Ed. - New York, 1987. - Vol. 5. - P. 50-140.

62. Rejatanavin R., Liberman C., Lawrence C.D. et al. //J. clin. Endocr. Metab. — 1985. — Vol. 61, N 1. — P. 17—21.

63. Refetojf S., Fang V.S., Marshall J.S. Ц Ibid. - 1975. - Vol. 56. - P. 177-182.

64. Refetojf S., Dwulet F.E., Benson M.D. // Ibid. — 1986. — Vol. 63, N 6. - P. 1432-1437.

65. Refetoff S. // Endocr. Rev. — 1989. — Vol. 10, N 3. — P. 275-293.

66. Reid D.G., Saunders M.R. // J. biol. Chem. — 1989. — Vol. 264, N 4. - P. 2003-2012.

67. Robbins J., Rail J.E., Rawson R.W. // J. clin. Endocr. Metab. - 1956. - Vol. 16, N 5. - P. 573- 579.

68. Robbins J., Rail J.E. // Physiol. Rev. — 1960. — Vol. 40. — P. 415-489.

69. Robbins J., Bartalena L. // Thyroid Hormone Metabolism / Ed. G. Hennemann. — New York, 1986. — P. 3—38.

70. Robbins J. Ц The Thyroid / Ed. R.D.Utiger. — Philadelphia, 1991. - P. 116-127.

71. Scanu A.M. // The Plasma Proteins. — New York,1987. — Vol. 5. - P. 142.

72. Schussler G.C. //Thyroid. — 1990. — Vol. 1, N 1. — P. 25— 34.

73. Schussler G., Divino C.M., Saraiva M.J. // Progress in Thyroid Research / Eds A.Gordon, /.Gross, G.Hennemann. — Rotterdam, 1991. - P. 725—728.

74. Siegel J.S., Villanueva G.B., Korcek L., Tabachnik M. // Int. J. Biochem. - 1984. - Vol. 16. N 5. - P. 575-577.

75. Strel’chyonok G.A., Avvakumov G.V., Akhrem A.A. Ц Carbo- hydr. Res.- 1984. - Vol.134. - P. 133- 140.

76. Strel’chyonok G.A., Avvakumov G.V. // J. Steroid Biochem. - 1990. - Vol.35,N 5. - P. 519-534.

77. Tabachnik M. //J. biol. Chem. - 1967. - Vol. 242, N 7. - P. 1646 -1650.

78. Teru S. I I Europ. J. nucl. Med. - 1984. - Vol. 9, N 3. - P. 121-124.

79. Trent J.M., Flink I.L., Morkin E. et al. // Amer. J. hum. Genet. - 1987. - Vol. 41, N 3. - P. 428-435.

80. Wahl R., Schmidberger H., Fessler E. et al. // Endocrynology. - 1989. - Vol. 124, N 3. - P. 1428-1437.

81. Weisiger R., Gollan J., Ockner R. // Science. — 1981. — Vol.211. - P. 1048-1051.

82. Zinn A.B., Marshall J.S., Carlson D.M. // J. biol. Chem. — 1978. - Vol. 253, N 19. - P. 6768-6773.


Об авторе

О. В. Свиридов
Институт биоорганической химии АН Беларуси
Беларусь


Рецензия

Для цитирования:


Свиридов О.В. Белки, связывающие тиреоидные гормоны и их физиологическая роль. Проблемы Эндокринологии. 1994;40(6):57-63. https://doi.org/10.14341/probl12197

For citation:


Sviridov O.V. Proteins binding the thyroid hormones and their physiological role. Problems of Endocrinology. 1994;40(6):57-63. (In Russ.) https://doi.org/10.14341/probl12197

Просмотров: 16374


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)