The role of diabetes in the onset and development of endothelial dysfunction
https://doi.org/10.14341/probl12212
Abstract
The vascular endothelium performs many functions. It is a key regulator of vascular homeostasis, maintains a balance between vasodilation and vasoconstriction, inhibition and stimulation of smooth muscle cell migration and proliferation, fibrinolysis and thrombosis, and is involved to regulation of platelet adhesion and aggregation. Endothelial dysfunction (ED) plays the critical role in pathogenesis of diabetes mellitus (DM) vascular complications. The purpose of this review was to consider the mechanisms leading to the occurrence of ED in DM. The paper discusses current literature data concerning the role of hyperglycemia, oxidative stress, advanced glycation end products in endothelial alteration. A separate section is devoted to the particularities of the functioning of the antioxidant system and their significance in the development of ED in DM. The analysis of the literature allows to conclude that pathological activation of glucose utilization pathways causes damage of endothelial cells, which is accompanied by disorders of all their basic functions. Metabolic disorders in DM cause a pronounced imbalance of free radical processes and antioxidant defense, accompanied by oxidative stress of endotheliocytes, which contributes to the progression of ED and the development of vascular complications. Many aspects of multicomponent regulatory reactions in the pathogenesis of the development of ED in DM have not been sufficiently studied.
About the Authors
Era B. PopyhovaRussian Federation
PhD
Tatiana V. Stepanova
Russian Federation
Junior Research Assistant of Central Scientific Research Laboratory
Dar’ya D. Lagutina
Russian Federation
Assistant of Central Scientific Research Laboratory
Tatiana S. Kiriiazi
Russian Federation
PhD, Associate Professor of Department of Biomedical Sciences
Alexey N. Ivanov
Russian Federation
Dsc, Head of Central Scientific Research Laboratory
References
1. Куликов Д.А., Глазков А.А., Ковалева Ю.А., и др. Перспективы использования лазерной допплеровской флоуметрии в оценке кожной микроциркуляции крови при сахарном диабете // Сахарный диабет — 2017. — Т.20. — №4. — С. 279−285. [Kulikov DA, Glazkov AA, Kovaleva YuA, et al. Prospects of laser doppler flowmetry application in assessment of skin microcirculation in diabetes. Diabetes Mellitus. 2017;20(4):279−285. (In Russ).] doi: https://doi.org/10.14341/DM8014
2. Гоженко А.И., Кузнецова А.С., Кузнецова Е.С., и др. Эндотелиальная дисфункция в патогенезе осложнений сахарного диабета. Сообщение I. Эндотелиальная дисфункция: этиология, патогенез и методы диагностики // Ендокринологія’. — 2017. — Т.22. — №2. — С. 171−181. [Gozhenko AI, Kuznetsova HS, Kuznetsova KS, et al. Endothelial dysfunction in the pathogenesis of diabetes complications. The message I. Endothelial dysfunction: etiology, pathogenesis and diagnostic methods. Endokrinologiia. 2017;22(2):171−181. (In Russ).]
3. Васина Л.В., Петрищев Н.Н., Власов Т.Д. Эндотелиальная дисфункция и ее основные маркеры // Регионарное кровообращение и микроциркуляция. — 2017. — Т.16. — №1. — С. 4–15. [Vasina LV, Petrishchev NN, Vlasov TD. Markers of endothelial dysfunction. Regional blood circulation and microcirculation. 2017;16(1):4–15. (In Russ).] doi: https://doi.org/10.24884/1682-6655-2017-16-1-4-15
4. Васина Л.В., Власов Т.Д., Петрищев Н.Н. Функциональная гетерогенность эндотелия (обзор) // Артериальная гипертензия. — 2017. — Т.23. — №2. — С. 88–102. [Vasina LV, Vlasov TD, Petrishchev NN. Functional heterogeneity of the endothelium (the review). Arterial hypertension. 2017;23(2):88–102. (In Russ).] doi: https://doi.org/10.18705/1607-419X-2017-23-2-88-102
5. Мельникова Ю.С., Макарова Т.П. Эндотелиальная дисфункция как центральное звено патогенеза хронических болезней // Казанский медицинский журнал. — 2015. — Т.96. — №4. — C. 659–665. [Mel’nikova JuS, Makarova TP. Endothelial dysfunction as the key link of chronic diseases pathogenesis. Kazan Medical Journal. 2015;96(4):659–665. (In Russ).] doi: https://doi.org/10.17750/KMJ2015-659
6. Власов Т.Д., Нестерович И.И., Шиманьски Д.А. Эндотелиальная дисфункция: от частного к общему. Возврат к «старой парадигме»? // Регионарное кровообращение и микроциркуляция. — 2019. — Т.18. — №2. — С. 19–27. [Vlasov TD, Nesterovich II, Shimanski DA. Endothelial dysfunction: from the particular to the general. Return to the «Old Paradigm»? Regional hemodynamics and microcirculation. 2019;18(2):19–27. (In Russ).] doi: https://doi.org/10.24884/1682-6655-2019-18-2-19-27
7. Степанова Т.В., Иванов А.Н., Терешкина Н.Е., и др. Маркеры эндотелиальной дисфункции: патогенетическая роль и диагностическое значение (обзор литературы) // Клиническая лабораторная диагностика. — 2019. — Т.64. — №1. — С. 34−41. [Stepanova TV, Ivanov AN, Tereshkina NE, et al. Markers of endothelial dysfunction: pathogenetic role and diagnostic significance. Klinicheskaia laboratornaia diagnostika. 2019;64(1):34−41. (In Russ).]
8. Torimoto K, Okada Y, Tanaka Y. Type 2 diabetes and vascular endothelial dysfunction. J Uoeh. 2018;40(1):65–75. doi: https://doi.org/10.7888/juoeh.40.65
9. Sena CM, Pereira AM, Seiça R. Endothelial dysfunction — a major mediator of diabetic vascular disease. Biochimica Biophysica Acta. 2013;1832:2216–2231.
10. Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17(1):121. doi: https://doi.org/10.1186/s12933-018-0763-3
11. Zhang H, Dellsperger KC, Zhang C. The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: an update. Basic Res Cardiol. 2012;107(1):237. doi: https://doi.org/10.1007/s00395-011-0237-1
12. Иванов А.Н., Пучиньян Д.М., Норкин И.А. Барьерная функция эндотелия, механизмы ее регуляции и нарушения // Успехи физиологических наук. — 2015. — Т.46. — №2. — С. 72−96. [Ivanov AN, Puchinyan DM, Norkin IA. Vascular endothelial barrier function. Uspekhi fiziologicheskikh nauk. 2015;46(2):72−96. (In Russ).]
13. Palella E, Cimino R, Pullano SA, et al. Laboratory parameters of hemostasis, adhesion molecules, and inflammation in type 2 diabetes mellitus: correlation with glycemic control. Int J Environ Res Public Health. 2020;17(1):E300. doi: https://doi.org/10.3390/ijerph17010300
14. Sena CM, Carrilho F, Seiç RM. Endothelial dysfunction in type 2 diabetes: targeting inflammation. In: Lenasi H, editor. Endothelial dysfunction — old concepts and new challenges. London: Intechopen; 2018. Р. 231−249. doi: https://doi.org/10.5772/intechopen.76994
15. Sena CM, Leandro A, Azul L, et al. Vascular oxidative stress: impact and therapeutic approaches. Front Physiol. 2018;9:1668. doi: https://doi.org/10.3389/fphys.2018.01668
16. Roberts AC, Porter KE. Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diab Vasc Dis Res. 2013;10(6):472–482. doi: https://doi.org/10.1177/1479164113500680
17. Попыхова Э.Б., Иванов А.Н., Степанова Т.В., и др. Взаимосвязь нарушений углеводного обмена и маркеров дисфункции эндотелия у животных с абсолютной недостаточностью инсулина при биостимуляции аутотрансплантацией кожного лоскута // Саратовский научно-медицинский журнал. — 2019. — Т.15. — №2. — С. 379–382. [Popykhova EB, Ivanov AN, Stepanova TV, et al. The relation of carbohydrate metabolism disorders and markers of endothelial dysfunction in animals with absolute insulin deficiency at biostimulation by autotransplantation of the skin flap. Saratov journal of medical scientific research. 2019;15(2):379–382. (In Russ).]
18. Лебедева Н.О., Викулова О.К. Маркеры доклинической диагностики диабетической нефропатии у пациентов с сахарным диабетом 1 типа // Сахарный диабет. — 2012. — №2. — С. 38–45. [Lebedeva NO, Vikulova OK. Pre-clinical markers for diagnosis of diabetic nephropathy in patients with type 1 diabetes mellitus. Diabetes Mellitus. 2012;(2):38–45. (In Russ).] doi: https://doi.org/10.14341/2072-0351-5517
19. Шестакова М.В. Сахарный диабет и хроническая болезнь почек: возможности прогнозирования, ранней диагностики и нефропротекции в XXI веке // Терапевтический архив. — 2016. — №6. — С. 84−88. [Shestakov MV. Diabetes mellitus and chronic kidney disease: Possibilities of prediction, early diagnosis, andnephroprotection in the 21st century. Ter Arch. 2016;(6):84−88. (In Russ).] doi: https://doi.org/10.17116/terarkh201688684-88
20. Sasso FC, Zuchegna C, Tecce MF, et al. High glucose concentration produces a short-term increase in pERK1/2 and p85 proteins, having a direct angiogenetic effect by an action similar to VEGF. Acta Diabetol. 2020. doi: https://doi.org/10.1007/s00592-020-01501-z
21. Занозина О.В., Боровков Н.Н., Щербатюк Т.Г. Свободно-радикальное окисление при сахарном диабете 2-го типа: источники образования, составляющие, патогенетические механизмы токсичности // Современные технологии в медицине. — 2010. — №3. — С. 104−112. [Zanozina OV, Borovkov NN, Sherbatyuk TG. Free-radical oxidation at a diabetes mellitus of the 2 type: sources of formation, components, pathogenetic mechanisms of toxicity. Modern technologies in medicine. 2010;(3):104−112. (In Russ).]
22. Gero D. Hyperglycemia-induced endothelial dysfunction. In: Lenasi H, editor. Endothelial dysfunction — old concepts and new challenges. London: Intechopen; 2018. Р. 179−210. doi: https://doi.org/10.5772/intechopen.76994
23. Goldberg HJ, Whiteside CI, Fantus IG. The hexosamine pathway regulates the plasminogen activator inhibitor-1 gene promoter and sp1 transcriptional activation through protein kinase С-beta I and -delta. J Biol Chem. 2002; 277: 33833–33841.
24. Худякова Н.В., Иванов Н.В., Пчелин И.Ю., и др. Диабетическая нейропатия: молекулярные механизмы развития и возможности патогенетической терапии // Juvenis Scientia. — 2019. — №4. — С. 8−12. [Hudiakova NV, Ivanov NV, Pchelin IYu, et al. Diabetic neuropathy: molecular mechanisms of development and possibilities for pathogenetic therapy. Juvenis Scientia. 2019;(4):8−12. (In Russ).] doi: https://doi.org/10.32415/jscientia.2019.04.02
25. Заводник И.Б., Дремза И.К., Лапшина Е.А., Чещевик В.Т. Сахарный диабет: метаболические эффекты и окислительный стресс // Биологические мембраны. — 2011. — Т.28. — №2. — С. 83–94. [Zavodnik IB, Dremza IK, Lapshina EA, Cheshchevik VT. Diabetes mellitus: metabolic effects and oxidative stress. Biochemistry (Moscow) Supplement. Series A: Membrane and Cell Biology. 2011;28(2):83–94. (In Russ).]
26. Тюренков И.Н., Воронков А.В., Слиецанс А.А., и др. Антиоксидантная терапия эндотелиальной дисфункции // Обзоры по клинической фармакологии и лекарственной терапии. — 2013. — Т.11. — №1. — С. 14−25. [Tyurenkov IN, Voronkov AV, Slieczans AA, et al. Antioksidantnaia terapiia endotelial’noi disfunktsi. Obzory` poklinicheskoi farmakologi i lekarstvennoi terapii. 2013;11(1):14−25. (In Russ).]
27. Куликов В.Ю. Роль окислительного стресса в регуляции метаболической активности внеклеточного матрикса соединительной ткани (обзор) // Медицина и образование в Сибири. — 2009. — №4. — С. 1−16. [Kulikov VYu. The metabolic activity role of oxidixing stress regulation in non-cellular matrix connective tissue (review). J Siberian Med Scien. 2009;(4):1−16. (In Russ).]
28. Leopold JA, Loscalzo J. Oxidative enzymopathies and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25(7):1332−1340. doi: https://doi.org/10.1161/01.atv.0000163846.51473.09
29. Muzykantov VR. Targeting of superoxide dismutase and catalase to vascular endothelium. J Control Release. 2001;71(1):1−21. doi: https://doi.org/10.1016/s0168-3659(01)00215-2
30. Zhang Y, Handy DE, Loscalzo J. Adenosine-dependent induction of glutathione peroxidase 1 in human primary endothelial cells and protection against oxidative stress. Circ Res. 2005;96(8):831−837. doi: https://doi.org/10.1161/01.res.0000164401.21929.cf
31. Lewis P, Stefanovic N, Pete J, et al. Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation. 2007;115(16):2178−2187. doi: https://doi.org/10.1161/circulationaha.106.664250
32. Weiss N, Zhang YY, Heydrick S, et al. Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction. Proc Natl Acad Sci U S A. 2001;98(22):12503−12508. doi: https://doi.org/10.1073/pnas.231428998
33. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45(1):51−88. doi: https://doi.org/10.1146/annurev.pharmtox.45.120403.095857
34. Maulik N, Das DK. Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions. Biochim Biophys Acta. 2008;1780(11):1368−1382. doi: https://doi.org/10.1016/j.bbagen.2007.12.008
35. Marcantoni E, Di Francesco L, Dovizio M, et al. Novel insights into the vasoprotective role of heme oxygenase-1. Int J Hypertens. 2012;2012:127910. doi: https://doi.org/10.1155/2012/127910
36. Боровкова Е.И., Антипова Н.В., Корнеенко Т.В., и др. Параоксоназа: универсальный фактор антиоксидантной защиты организма человека // Вестник РАМН. — 2017. — Т.72. — №1. — С. 5–10. [Borovkova EI, Antipova NV, Korneenko TV, et al. Paraoxonase: the universal factor of antioxidant defense in human body. Annals of the Russian Academy of Medical Sciences. 2017;72(1):5–10. (In Russ).] doi: https://doi.org/10.15690/vramn764
37. Kulka M. A review of paraoxonase 1 properties and diagnostic applications. Polish J Veterinary Sciences. 2016;19(1):225–232. doi: https://doi.org/10.1515/pjvs-2016-0028
38. Rajković GM, Rumora L, Barišić K. The paraoxonase 1, 2 and 3 in humans. Biochem Med (Zagreb). 2011;21(2):122–130. doi: https://doi.org/10.11613/bm.2011.020
39. Rozenberg O, Shih DM, Aviram M. Paraoxonase 1 (PON1) attenuates macrophage oxidative status: studies in PON1 transfected cells and in PON1 transgenic mice. Atherosclerosis. 2005;181(1):9−18. doi: https://doi.org/10.1016/j.atherosclerosis.2004.12.030
40. Altenhofer S, Witte I, Teiber JF. One enzyme, two functions: PON2 prevents mitochondrial superoxide formation and apoptosis independent from its lactonase activity. J Biol Chem. 2010;285(32):24398–24403. doi: https://doi.org/10.1074/jbc.m110.118604
41. Devarajan A, Bourquard N, Hama S. Paraoxonase 2 deficiency alters mitochondrial function and exacerbates the development of atherosclerosis. Antioxid Redox Signal. 2011;14(3):341–351. doi: https://doi.org/10.1089/ars.2010.3430
42. Giordano G, Cole TB, Furlong CE, Costa LG. Paraoxonase 2 (PON2) in the mouse central nervous system: a neuroprotective role? Toxicol Appl Pharmacol. 2011;256(3):369–378. doi: https://doi.org/10.1016/j. taap.2011.02.014
43. Bourquard N, Ng CJ, Reddy ST. Impaired hepatic insulin signalling in PON2-deficient mice: a novel role for the PON2/ apoE axis on the macrophage inflammatory response. Biochem J. 2011;436(1):91–100. doi: https://doi.org/10.1042/bj20101891
44. Dhananjayan R, Koundinya KS, Malati T, Kutala VK. Endothelial dysfunction in type 2 diabetes mellitus. Indian J Clin Biochem. 2016;31(4):372–379. doi: https://doi.org/10.1007/s12291-015-0516-y
45. Худякова Н.В., Пчелин И.Ю., Шишкин А.Н. Взаимосвязь гипергомоцистеинемии с гематологическими нарушениями и сердечно-сосудистыми осложнениями при диабетической нефропатии // Научный аспект. — 2015. — №3. — С. 271−281. [Hudyakova NV, Pchelin IYu, Shishkin AN. Vzaimosvyaz’ gipergomotsisteinemii s gematologicheskimi narusheniyami i serdechno-sosudistymi oslozhneniyami pri diabetichesko inefropatii. Nauchnii aspekt. 2015;(2):271−281. (In Russ).]
46. Jenkins AJ, Joglekar MV, Hardikar AA, et al. Biomarkers in diabetic retinopathy. Rev Diabet Stud. 2015;12(1–2):159–195. doi: https://doi.org/10.1900/RDS.2015.12.159
47. Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab. 2013;3(2):94−108. doi: https://doi.org/10.1016/j.molmet.2013.11.006
48. Ahmad S, Siddiqui Z, Rehman S, et al. A glycation angle to look into the diabetic vasculopathy: cause and cure. Curr Vasc Pharmacol. 2017;15(4):352−364. doi: https://doi.org/10.2174/1570161115666170327162639
49. Kohata Y, Ohara M, Nagaike H, et al. Association of hemoglobin A1c, 1,5-anhydro-D-glucitol and glycated albumin with oxidative stress in type 2 diabetes mellitus patients: a cross-sectional study. Diabetes Ther. 2020;11(3):655−665. doi: https://doi.org/10.1007/s13300-020-00772-7
50. Ravi R, Ragavachetty NN, Subramaniam RB. Effect of advanced glycation end product on paraoxonase 2 expression: Its impact on endoplasmic reticulum stress and inflammation in HUVECs. Life Sci. 2020;246:117397. doi: https://doi.org/10.1016/j.lfs.2020.117397
51. De la Cruz-Ares S, Cardelo MP, Gutiérrez-Mariscal FM, et al. Endothelial dysfunction and advanced glycation end products in patients with newly diagnosed versus established diabetes: from the CORDIOPREV study. Nutrients. 2020;12(1):E238. doi: https://doi.org/10.3390/nu12010238
Supplementary files
|
1. Fig. Scheme of the pathogenesis of endothelial dysfunction in diabetes mellitus | |
Subject | ||
Type | Other | |
View
(356KB)
|
Indexing metadata ▾ |
Review
For citations:
Popyhova E.B., Stepanova T.V., Lagutina D.D., Kiriiazi T.S., Ivanov A.N. The role of diabetes in the onset and development of endothelial dysfunction. Problems of Endocrinology. 2020;66(1):47-55. (In Russ.) https://doi.org/10.14341/probl12212

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).