The activity of NAD- and NAD(P)-dependent dehydrogenases in lymphocytes of peripheral blood in Graves’ disease
https://doi.org/10.14341/probl12310
Abstract
BACKGROUND: The regulatory effect of thyroid hormones on the metabolism of the immune system cells (activation of oxidative processes, separation of oxidative phosphorylation and increased protein synthesis) depends on their number. Changes in the activity of intracellular enzymes in Graves’ disease (GD) can determine the mechanisms of maintaining autoimmune inflammation in relapse of the disease. The exact role of NAD(P)-dependent dehydrogenases in the development and maintenance of immune response in GD is still poorly investigated.
AIMS: To study the activity of NAD(P)-dependent dehydrogenases in lymphocytes of peripheral blood in patients with manifestation and relapse of GD to clarify the mechanisms of development and progression of the autoimmune process.
METHODS: A single-center, cohort, prospective, continuous, observational, open-label, controlled trial was conducted to evaluate the lymphocytes NAD(P)-dependent activity in 151 women with GD and hyperthyroidism, mean age 40.7±13.2, 52 (37.14%), who were on follow-up at the endocrinology center of Krasnoyarsk Regional clinical hospital from 2016 to 2019. The NAD(P)-dependent dehydrogenases activity measured using biochemiluminescence method.
RESULTS: In patients with newly diagnosed of GD, relative to the control values and levels detected in relapse group we observe the increase of G6PDH and decrease of NADH-LDH. In GD relapse group compare to the control range in blood lymphocytes decreases the activity of LDH and NAD(P)-ICDH. In patients with newly diagnosed GD, two positive сorrelation were found: between fT3 level and MDG activity (r=0.90, p=0.037), and between fT4 level and NAD(P)-ICDH activity (r=0.82, p=0.007). In patients with relapse of GD positive relationships between the concentration of TSH and the activity of LDH (r=0.73, p=0.039), and MDH (r=0.93, p=0.002), as well as in a pair of fT4 and NADGDH (r=0.70, p=0.036) were revealed.
CONCLUSION: The established differences in the activity of NAD(P)-dependent dehydrogenases in peripheral blood lymphocytes in patients with manifestation and relapse of GD can reflect in the first case the response of immune cells to a functional-regulatory signal with the development of hyperthyroidism, and in the second case, adaptive changes with the progression of autoimmune process.
About the Authors
Margarita A. DudinaKrasnoyarsk State Medical University named after prof. V.F. Voino-Yasenetsky; Krasnoyarsk Regional Clinical Hospital
Russian Federation
MD, PhD
Andrey Savchenko
Russian Federation
MD, PhD, Professor
Sergey A. Dogadin
Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenetsky; Krasnoyarsk Regional Clinical Hospital
Russian Federation
MD, PhD, Professor
Ivan I. Gvozdev
Russian Federation
MD
References
1. de Leo S, Lee SY, Braverman LE. Hyperthyroidism. Lancet. 2016;388(10047):906−918. doi: 10.1016/S0140-6736(16)00278-6.
2. Чиркин А.А., Данченко Е.О. Биохимия. — М.: Медицинская литература, 2010. — 610 с. [Chirkin AA, Danchenko EO. Biohimiia. Moscow: Medicinskaya literatura; 2010. 610 p. (In Russ).]
3. Jara EL, Muñoz-Durango N, Llanos C, et al. Modulating the function of the immune system by thyroid hormones and thyrotropin. Immunol Lett. 2017;184:76–83. doi: 10.1016/j.imlet.2017.02.010.
4. Alack K, Krüger K, Weiss A, et al. Aerobic endurance training status affects lymphocyte apoptosis sensitivity by induction of molecular genetic adaptations. Brain Behav Immun. 2019;75:251–257. doi: 10.1016/j.bbi.2018.10.001.
5. Csaba G, Pállinger E. Thyrotropic hormone (TSH) regulation of triiodothyronine (T(3)) concentration in immune cells. Inflamm Res. 2009;58(3):151–154. doi: 10.1007/s00011-008-8076-8.
6. Трошина Е.А., Свириденко Н.Ю., Ванушко В.Э., и др. Федеральные клинические рекомендации Российской ассоциации эндокринологов по диагностике и лечению токсического зоба // Клиническая и экспериментальная тиреоидология. — 2014. — Т.10. — №3. — С. 8−19. [Troshina EA, Sviridenko NY, Vanushko VE, et al. Russian Association of endocrinologists clinical practice guidelines for thyrotoxicosis diagnosis and treatment. Clinical and experimental thyroidology. 2014;10(3):8–19. (In Russ).] doi: 10.14341/ket201438-19.
7. Liu L, Lu H, Liu Y, et al. Predicting relapse of Graves’ disease following treatment with antithyroid drugs. Exp Ther Med. 2016;11(4):1453–1458. doi: 10.3892/etm.2016.3058.
8. Czyzewska U, Tylicki A, Siemieniuk M, Strumilo S. Changes of activity and kinetics of certain liver and heart enzymes of hypothyroid and T(3)-treated rats. J Physiol Biochem. 2012;68(3):345–351. doi: 10.1007/s13105-012-0146-2.
9. Arts RJ, Joosten LA, Netea MG. Immunometabolic circuits in trained immunity. Semin Immunol. 2016;28(5):425–430. doi: 10.1016/j.smim.2016.09.002.
10. Cавченко А.А. Определение активности NAD(P)-зависимых дегидрогеназ в нейтрофильных гранулоцитах биолюминесцентным методом // Бюллетень экспериментальной биологии и медицины. — 2015. — Т.159. — №5. — С. 656−660. [Savchenko AA. Evaluation of NAD(P)-dependent dehydrogenase activities in neutrophilic granulocytes by the bioluminescent method. Bulletin of experimental biology and medicine. 2015;159(5):656–660. (In Russ).]
11. Peters AL, van Noorden CJ. Single cell cytochemistry illustrated by the demonstration of glucose-6-phosphate dehydrogenase deficiency in erythrocytes. Methods Mol Biol. 2017;1560:3–13. doi: 10.1007/978-1-4939-6788-9_1.
12. Bolin AP, Guerra BA, Nascimento SJ, Otton R. Changes in lymphocyte oxidant/antioxidant parameters after carbonyl and antioxidant exposure. Int Immunopharmacol. 2012;14(4):690–697. doi: 10.1016/j.intimp.2012.10.003.
13. Georgakouli K, Fatouros IG, Draganidis D, et al. Exercise in glucose-6-phosphate dehydrogenase deficiency: harmful or harmless? A narrative review. Oxid Med Cell Longev. 2019;2019:8060193. doi: 10.1155/2019/8060193.
14. Koukourakis MI, Giatromanolaki A. Warburg effect, lactate dehydrogenase, and radio/chemo-therapy efficacy. Int J Radiat Biol. 2019;95(4):408–426. doi: 10.1080/09553002.2018.1490041.
15. Bedoyan JK, Hecht L, Zhang S, et al. A novel null mutation in the pyruvate dehydrogenase phosphatase catalytic subunit gene (PDP1) causing pyruvate dehydrogenase complex deficiency. JIMD Rep. 2019;48(1):26–35. doi: https://doi.org/10.1002/jmd2.12054.
16. Laurenti G, Tennant DA. Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): three players for one phenotype in cancer? Biochem Soc Trans. 2016;44(4):1111–1116. doi: 10.1042/bst20160099.
17. Pan JH, Tang J, Redding MC, et al. Hepatic transcriptomics reveals that lipogenesis is a key signaling pathway in isocitrate dehydrogenase 2 deficient mice. Genes (Basel). 2019;10(9). pii: E728. doi: 10.3390/genes10090728.
18. Eleftheriadis T, Pissas G, Antoniadi G, et al. Malate dehydrogenase-2 inhibitor LW6 promotes metabolic adaptations and reduces proliferation and apoptosis in activated human T-cells. Exp Ther Med. 2015;10(5):1959–1966. doi: 10.3892/etm.2015.2763.
19. Navarro F, Bacurau AV, Pereira GB, et al. Moderate exercise increases the metabolism and immune function of lymphocytes in rats. Eur J Appl Physiol. 2013;113(5):1343–1352. doi: 10.1007/s00421-012-2554-y.
20. Xu R, Huang F, Zhang S, et al. Thyroid function, body mass index, and metabolic risk markers in euthyroid adults: a cohort study. BMC Endocr Disord. 2019;19(1):58. doi: 10.1186/s12902-019-0383-2.
Supplementary files
Review
For citations:
Dudina M.A., Savchenko A., Dogadin S.A., Gvozdev I.I. The activity of NAD- and NAD(P)-dependent dehydrogenases in lymphocytes of peripheral blood in Graves’ disease. Problems of Endocrinology. 2020;66(2):33-41. (In Russ.) https://doi.org/10.14341/probl12310

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).