Use of thyroid hormones in the treatment of cardiovascular diseases: literature review
https://doi.org/10.14341/probl12471
Abstract
Cardiovascular diseases remain the leading cause of death all over the world. Thyroid hormones play a significant role in the regulation of cardiac function. According to a number of researches, patients with cardiovascular diseases usually have a decrease in the concentration of thyroid hormones in the blood serum, which may be associated with a poor prognosis. Today it still remains unclear whether the change in the bioavailability of thyroid hormones in the myocardium is a favorable physiological mechanism or a replication of an adaptation disorder. Experimental researches suggest that thyroid hormone therapy may be applied in clinical cardiology.
This review describes the results of researches examining the use of thyroid hormones in patients with cardiovascular diseases, as well as experiment data on animal models. The available data on the use of thyroid hormones in patients with acute myocardial infarction and heart failure allow us to suggest that normalization of thyroid hormone levels is a safe and potentially effective treatment method in the group of patients with cardiovascular disease. At the same time, the data on the use of thyroid hormones in patients who have undergone an open-heart surgery or heart transplantation are limited. However, at present, it is difficult to draw unambiguous conclusions about the benefits, as well as about the possible risk of using thyroid hormones in the described conditions. Large-scale clinical researches are required to confirm the safety and evaluate the effectiveness of such therapy. Moreover, it is necessary to set parameters for evaluating the safety and effectiveness and understand which hormone (thyroxine or triiodothyronine), what dosage and at what stage of the disease should be applied. Until we do not have answers for these questions, thyroid hormone therapy in patients with cardiovascular diseases should remain within the research field.
About the Authors
Daniil V. BorisovRussian Federation
MD
Diliara N. Gubaeva
Russian Federation
MD
Evgeniy A. Praskurnichiy
Russian Federation
MD, PhD, Professor
References
1. Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017;70:1–25. doi: 10.1016/j.jacc.2017.04.052.
2. Roger VL. Epidemiology of heart failure. Circ. Res. 2013;1136:646–659. doi: 10.1161/circresaha.113.300268.
3. Jabbar A, Pingitore A, Pearce SH, et al. Thyroid hormones and cardiovascular disease. Nat. Rev. Cardiol. 2017;14:39–55. doi: 10.1038/nrcardio.2016.174.
4. Taylor PN, Razvi S, Pearce SH, Dayan CM. Clinical review: a review of the clinical consequences of variation in thyroid function within the reference range. J. Clin. Endocrinol. Metab. 2013;98:3562–3571. doi: 10.1210/jc.2013-1315.
5. Kaptein EM, Sanchez A, Beale E, Chan LS. Clinical review: thyroid hormone therapy for postoperative nonthyroidal illnesses: a systematic review and synthesis. J. Clin. Endocrinol. Metab. 2010;95:4526–4534. doi: 10.1210/jc.2010-1052.
6. Razvi S, Jabbar A, Pingitore A, et al. Thyroid hormones and cardiovascular function and diseases. J. Am. Coll. Cardiol. 2018;71:1781–1796. doi: 10.1016/j.jacc.2018.02.045.
7. Collet TH, Gussekloo J, Bauer DC, et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch. Intern. Med. 2012;172:799–809. doi: 10.1001/archinternmed.2012.402.
8. Gencer B, Collet TH, Virgini V, et al. Subclinical thyroid dysfunction and the risk of heart failure events: an individual participant data analysis from 6 prospective cohorts. Circulation. 2012;126:1040–1049. doi: 10.1161/CIRCULATIONAHA.112.096024.
9. Gereben B, Zavacki AM, Ribich S, et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 2008;29:898–938. doi: 10.1210/er.2008-0019.
10. Hoit BD, Khoury SF, Shao Y, et al. Effects of thyroid hormone on cardiac beta-adrenergic responsiveness in conscious baboons. Circulation. 1997;96:592–598. doi: 10.1161/01.cir.96.2.592.
11. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N. Engl. J. Med. 2001;344:501–509. doi: 10.1056/NEJM200102153440707.
12. Simonides WS, Mulcahey MA, Redout EM, et al. Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J. Clin. Investig. 2008;118:975–983. doi: 10.1172/JCI32824.
13. Mourouzis I, Forini F, Pantos C, Iervasi G. Thyroid hormone and cardiac disease: from basic concepts to clinical application. J. Thyroid Res. 2011;2011:958626. doi: 10.4061/2011/958626.
14. Pantos C, Mourouzis I, Cokkinos DV. New insights into the role of thyroid hormone in cardiac remodeling: time to reconsider? Heart Fail. Rev. 2011;16:79–96. doi: 10.1007/s10741-010-9185-3.
15. Pingitore A, Nicolini G, Kusmic C, et al. Cardioprotection and thyroid hormones. Heart Fail. Rev. 2016;21:391–399. doi: 10.1007/s10741-016-9545-8.
16. Pol CJ, Muller A, Zuidwijk MJ, et al. Left-ventricular remodelling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology. 2011;152:669–679. doi: 10.1210/en.2010-0431.
17. Song Y, Li J, Bian S, et al. Association between low free triiodothyronine levels and poor prognosis in patients with acute ST-elevation myocardial infarction. Biomed. Res. Int. 2018;2018:9803851. doi: 10.1155/2018/9803851.
18. Iervasi G, Molinaro S, Landi P, et al. Association between increased mortality and mild thyroid dysfunction in cardiac patients. Arch. Intern. Med. 2007;167:1526–1532. doi: 10.1001/archinte.167.14.1526.
19. Rajagopalan V, Zhang Y, Pol C, et al. Modified low-dose triiodo-L-thyronine therapy safely improves function following myocardial ischemia-reperfusion injury. Front. Phsyiol. 2017;8:225. doi: 10.3389/fphys.2017.00225.
20. Lesmana R, Sinha RA, Singh BK, et al. Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle. Endocrinology. 2016;157:23–38. doi: 10.1210/en.2015-1632.
21. Weltman NY, Ojamaa K, Schlenker EH, et al. Low-dose T3 replacement restores depressed cardiac T3 levels, preserves coronary microvasculature and attenuates cardiac dysfunction in experimental diabetes mellitus. Mol. Med. 2014;20:302–312. doi: 10.2119/molmed.2013.00040.
22. Pantos C, Mourouzis I, Saranteas T, et al. Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion? Basic Res. Cardiol. 2009;104:69–77. doi: 10.1007/s00395-008-0758-4.
23. Pantos C, Mourouzis I, Markakis K, et al. Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. Eur. J. Cardiothorac. Surg. 2007;32:333–339. doi: 10.1016/j.ejcts.2007.05.004.
24. Wang B, Liu S, Li L, et al. Non-thyroidal illness syndrome in patients with cardiovascular diseases: a systematic review and meta-analysis. Int. J. Cardiol. 2017;226:1–10. doi: 10.1016/j.ijcard.2016.10.039.
25. Pingitore A, Mastorci F, Piaggi P, et al. Usefulness of triiodothyronine replacement therapy in patients with ST elevation myocardial infarction and borderline/reduced triiodothyronine levels (from the THIRST study) Am. J. Cardiol. 2019;123:905–912. doi: 10.1016/j.amjcard.2018.12.020.
26. Jabbar A, Ingoe L, Pearce S, et al. Thyroxine in acute myocardial infarction (ThyrAMI) – levothyroxine in subclinical hypothyroidism post-acute myocardial infarction: study protocol for a randomised controlled trial. Trials. 2015;16:115. doi: 10.1186/s13063-015-0621-5.
27. Chen S, Shauer A, Zwas DR, Lotan C, Keren A, Gotsman I. The effect of thyroid function on clinical outcome in patients with heart failure. Eur. J. Heart Fail. 2014;16:217–226. doi: 10.1002/ejhf.42.
28. Mitchell JE, Hellkamp AS, Mark DB, et al. Thyroid function in heart failure and impact on mortality. JACC Heart Fail. 2013;1:48–55. doi: 10.1016/j.jchf.2012.10.004.
29. Iervasi G, Pingitore A, Landi P, et al. Low-T3 syndrome. A strong prognostic predictor of death in patients with heart disease. Circulation. 2003;107:708–713. doi: 10.1161/01.cir.0000048124.64204.3f.
30. Peeters RP, Wouters PJ, Kaptein E, et al. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J. Clin. Endocrinol. Metab. 2003;88:3202–3211. doi: 10.1210/jc.2002-022013.
31. Chopra IJ, Wu SY, Teco GN, Santini F. A radioimmunoassay for measurement of 3,5,3′-triiodothyronine sulfate: studies in thyroidal and nonthyroidal diseases, pregnancy, and neonatal life. J. Clin. Endocrinol. Metab. 1992;75:189–194. doi: 10.1210/jcem.75.1.1619009.
32. Duntas LH, Nguyen TT, Keck FS, et al. Changes in metabolism of TRH in euthyroid sick syndrome. Eur. J. Endocrinol. 1999;141:337–341. doi: 10.1530/eje.0.1410337.
33. Bartalena L, Bogazzi F, Brogioni S, et al. Role of cytokines in the pathogenesis of the euthyroid sick syndrome. Eur. J. Endocrinol. 1998;138:603–614. doi: 10.1530/eje.0.1380603.
34. Kimura T, Kanda T, Kotajima N, et al. Involvement of circulating IL-6 and its receptor in the development of euthyroid sick syndrome in patients with acute myocardial infarction. Eur. J. Endocrinol. 2000;143:179–184. doi: 10.1530/eje.0.1430179.
35. Kinugawa K, Yonekura K, Ribeiro RC, et al. Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ. Res. 2001;89:591–598. doi: 10.1161/hh1901.096706.
36. Liu Y, Redetzke RA, Said S, et al. Serum thyroid hormone levels may not accurately reflect thyroid tissue levels and cardiac function in mild hypothyroidism. Am. J. Physiol. Heart Circ. Physiol. 2008;294:H2137–H2143. doi: 10.1152/ajpheart.01379.2007.
37. Moruzzi P, Doria E, Agostoni PG. Medium-term effectiveness of L-thyroxine treatment in idiopathic dilated cardiomyopathy. Am. J. Med. 1996;101:461–467. doi: 10.1016/s0002-9343(96)00281-1.
38. Hamilton MA, Stevenson LW, Fonarow GC, et al. Safety and hemodynamic effects of intravenous triiodothyronine in advanced congestive heart failure. Am. J. Cardiol. 1998;81:443–447. doi: 10.1016/s0002-9149(97)00950-8.
39. Pingitore A, Galli E, Barison A, et al. Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J. Clin. Endocrinol. Metab. 2008;93:1351–1358. doi: 10.1210/jc.2007-2210.
40. Holmager P, Schmidt U, Mark P, et al. Long-term L-triiodothyronine (T3) treatment in stable systolic heart failure patients: a randomised double-blind, cross-over, placebo-controlled intervention study. Clin. Endocrinol. 2015;83:931–937. doi: 10.1111/cen.12648.
41. Amin A, Chitsazan M, Taghavi S, Ardeshiri M. Effects of triiodothyronine replacement therapy in patients with chronic stable heart failure and low-triiodothyronine syndrome: a randomized, double-blind, placebo-controlled study. ESC Heart Fail. 2015;2:5–11. doi: 10.1002/ehf2.12025.
42. Gerdes AM, Iervasi G. Thyroid replacement therapy and heart failure. Circulation. 2010;122(4):385–93. doi:10.1161/CIRCULATIONAHA.109.917922.
43. Roos A, Links TP, Wolffenbuttel BH. Subclinical thyroid disease and heart failure. Eur J Heart Fail. 2014;16(2):119–21. doi:10.1002/ejhf.54.
44. Weltman NY, Pol CJ, Zhang Y, Wang Y, Koder A, Raza S, et al. Long-term physiological T3 supplementation in hypertensive heart disease in rats. Am J Physiol Heart Circ Physiol. 2015;309(6):H1059–65. doi:10.1152/ajpheart.00431.2015.
45. Trivieri MG, Oudit GY, Sah R, Kerfant BG, Sun H, Gramolini AO, et al. Cardiac-specific elevations in thyroid hormone enhance contractility and prevent pressure overload-induced cardiac dysfunction. Proc Natl Acad Sci U S A. 2006;103(15):6043–8. doi:10.1073/pnas.0601072103.
46. Thomas TA, Kuzman JA, Anderson BE, Andersen SM, Schlenker EH, Holder MS, et al. Thyroid hormones induce unique and potentially beneficial changes in cardiac myocyte shape in hypertensive rats near heart failure. Am J Physiol Heart Circ Physiol. 2005;288(5):H2118–22. doi:10.1152/ajpheart.01000.2004.
47. Kinugasa Y, Yamamoto K. Subclinical hypothyroidism as a new therapeutic target for patients with heart failure with preserved ejection fraction. Circ J. 2014;78(6):1333–4. doi:10.1253/circj.cj-14-0436.
48. Zhang Y, Dedkov EI, Lee B 3rd, Li Y, Pun K, Gerdes AM. Thyroid hormone replacement therapy attenuates atrial remodeling and reduces atrial fibrillation inducibility in a rat myocardial infarction-heart failure model. J Card Fail. 2014;20(12):1012–9. doi:10.1016/j.cardfail.2014.10.003.
49. Khalife WI, Tang YD, Kuzman JA, Thomas TA, Anderson BE, Said S, et al. Treatment of subclinical hypothyroidism reverses ischemia and prevents myocyte loss and progressive LV dysfunction in hamsters with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2005;289(6):H2409–15. doi:10.1152/ajpheart.00483.2005.
50. Ranasinghe AM, Quinn DW, Pagano D, et al. Glucose-insulin-potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation. 2006;114:I245–I250. doi: 10.1161/CIRCULATIONAHA.105.000786.
51. Zhang JQ, Yang QY, Xue FS, et al. Preoperative oral thyroid hormones to prevent euthyroid sick syndrome and attenuate myocardial ischemia-reperfusion injury after cardiac surgery with cardiopulmonary bypass in children: a randomized, double-blind, placebo-controlled trial. Medicine. 2018;97:e12100. doi: 10.1097/MD.0000000000012100.
52. Portman MA, Slee A, Olson AK, et al. TRICC Investigators. Triiodothyronine supplementation in infants and children undergoing cardiopulmonary bypass (TRICC): a multicenter placebo-controlled randomized trial: age analysis. Circulation. 2010;122:S224–S233. doi: 10.1161/CIRCULATIONAHA.109.926394.
53. Wicomb W, Boyd ST, Cooper DK, et al. Ex vivo functional evaluation of pig hearts subjected to 24 hours preservation by hypothermic perfusion. S. Afr. Med. J. 1981;60:245–248.
54. Novitzky D, Mi Z, Sun Q, et al. Thyroid hormone therapy in the management of 63,593 brain-dead organ donors: a retrospective analysis. Transplantation. 2014;98:1119–1127. doi: 10.1097/TP.0000000000000187.
55. Cooper LB, Milano CA, Williams M, et al. Thyroid hormone use during cardiac transplant organ procurement. Clin. Transpl. 2016;30:1578–1583. doi: 10.1111/ctr.12860.
56. Zaroff JG, Rosengard BR, Armstrong WF, et al. Consensus conference report: maximizing use of organs recovered from the cadaver donor: cardiac recommendations, March 28-29, 2001, Crystal City, Va. Circulation. 2002;106:836–841. doi: 10.1161/01.cir.0000025587.40373.75.
57. Gerdes AM. Restoration of thyroid hormone balance: a game-changer in the treatment of heart failure? Am J Physiol Heart Circ Physiol. 2015;308(1):H1–10. doi:10.1152/ajpheart.00704.2014.
58. Nuovo J, Ellsworth A, Christensen DB, Reynolds R. Excessive thyroid hormone replacement therapy. J Am Board Fam Pract. 1995;8(6):435–9.
59. Biondi B, Fazio S, Carella C, Amato G, Cittadini A, Lupoli G, et al. Cardiac effects of long-term thyrotropin-suppressive therapy with levothyroxine. J Clin Endocrinol Metab. 1993;77(2):334–8. doi:10.1210/jcem.77.2.8345037.
60. Tribulova N, Knezi V, Shainberg A, Seki S, Soukup T. Thyroid hormones and cardiac arrhythmias. Vasc Pharmacol. 2010;52(3–4):102–12. doi:10.1016/j.vph.2009.10.001.
Supplementary files
|
1. Figure 1. The effect of thyroid hormones on cardiomyocytes. Thyroid hormones T4 (thyroxine) and T3 (triiodothyronine) enter cardiomyocytes via membrane carriers. Inside the cell, T4 can be activated by type 2 deiodinase (D2) = transformed into T3. Both T4 and T3 can be deactivated by type 3 deiodinase (D3) and converted to reverse T3 (pT3) and diiodothyronine (T2), respectively. From the cytosol, T3 enters the nucleus; in the presence of hormone-responsive elements (GRE), it binds to thyroid hormone receptors (TR) and initiates the regulation of targeted genes and other metabolic pathways (genomic effects). Also, thyroid hormones have non-genomic effects. Adapted from [3]. | |
Subject | ||
Type | Other | |
View
(418KB)
|
Indexing metadata ▾ |
Review
For citations:
Borisov D.V., Gubaeva D.N., Praskurnichiy E.A. Use of thyroid hormones in the treatment of cardiovascular diseases: literature review. Problems of Endocrinology. 2020;66(3):6-14. (In Russ.) https://doi.org/10.14341/probl12471

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).