Role of leptin and nuclear receptor PPARγ in PCOS pathogenesis
https://doi.org/10.14341/probl12620
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of female endocrine infertility. Insulin resistanсе is supposed to be one of the essential factors of this disease pathways. At the same time, the mechanisms of PCOS development in insulin-resistant patients have not been completely established. Leptin and Peroxisome Proliferator-Activated Receptor γ(PPARγ) are involved in carbohydrate metabolism and reproduction function regulation. It indicates that leptin and PPARγ possibly play a role in the pathways of PCOS. This article is a review of publications on this issue. The purpose of this review was to systematize the available information on the molecular mechanisms that determine the role of leptin and PPARγ in the development of PCOS. The literature search was carried out from 04/05/2020 to 05/17/2020 using the scientific literature databases: NCBI PubMed (foreign sources) and Cyberleninka (domestic sources). We analyzed publications for the period 1990-2020.
The review presents the current understanding of the possible role of leptin and PPARγ in the regulation of endocrine, immune systems, and reproductive function, as well as in the development of PCOS. Currently, no studies cover the mechanisms of interaction between leptin and PPARγ in the pathways of this syndrome. The available studies indicating the individual contribution and association of leptin and PPARγ with PCOS are conflicting and have many limitations. Therefore, more studies of direct and indirect interaction of leptin and PPARγ, as well as their role in PCOS pathways, are needed.
About the Authors
K. D. IevlevaRussian Federation
Kseniia D. Ievleva.
Timiryzeva st. 16, Irkutsk, 664003.
eLibrary SPIN: 2743-9932
Competing Interests: No
I. N. Danusevich
Russian Federation
Irina N. Danusivich - MD, PhD.
Timiryzeva st. 16, Irkutsk, 664003.
eLibrary SPIN: 6289-3358
Competing Interests: No
L. V. Suturina
Russian Federation
Larisa V. Suturina - MD, PhD.
Timiryzeva st. 16, Irkutsk, 664003.
eLibrary SPIN: 9419-0244
Competing Interests: No
References
1. Fauser BC, Tarlatzis BC, Rebar RW, et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012;97(1):28-38.e25. doi: https://doi.org/10.1016/j.fertnstert.2011.09.024 Epub 2011 Dec 6. PMID: 22153789.
2. Lizneva D, Kirubakaran R, Mykhalchenko K, Suturina L, et al. Phenotypes and body mass in women with polycystic ovary syndrome identified in referral versus unselected populations: systematic review and meta-analysis. Fertil Steril. 2016;106(6):1510-1520.e2. doi: https://doi.org/10.1016/j.fertnstert.2016.07.1121
3. Suturina LV, Atalyan AV, Darzhaev ZY, et al. Overweight and obesity prevalence in referral population of infertile women with polycystic ovary syndrome. Advances in Obesity, Weight Management and Control. 2017; 7(1):00188. doi: https://doi.org/10.15406/aowmc.2017.07.00188
4. Belenkaia LV, Lazareva LM, Walker W, et al. Criteria, phenotypes and prevalence of polycystic ovary syndrome. Minerva Ginecol. 2019; 71(3):211-223. doi: https://doi.org/10.23736/S0026-4784.19.04404-6
5. Deshpande P, Gupta A. Causes and prevalence of factors causing infertility in a public health facility. J Hum Reprod Sci. 2019; 12(4):287. doi: https://doi.org/10.4103/jhrs.JHRS_140_18
6. Dale PO, Tanbo T., Vaaler S., Abyholm T. Body weight, hyperinsulinemia, and gonadotropin levels in the polycystic ovarian syndrome: evidence of two distinct populations. Fertility and Sterility. 1992; 58(3):487–491. doi: https://doi.org/10.1016/s0015-0282(16)55249-2.
7. Garruti G, de Palo R, Rotelli MT, et al. Association between Follicular Fluid Leptin and Serum Insulin Levels in Nonoverweight Women with Polycystic Ovary Syndrome. Biomed Res Int. 2014;2014:1-7. doi: https://doi.org/10.1155/2014/980429.
8. Seufert J. Leptin Effects on Pancreatic β-Cell Gene Expression and Function. Diabetes. 2004;53(Supplement 1):S152-S158. doi: https://doi.org/10.2337/diabetes.53.2007.S152.
9. Spicer LS, Francisco CC. The adipose obese gene product, leptin: evidence of a direct inhibitory role in ovarian function. Endocrinology. 1997;138(8):3374-9. doi: https://doi.org/10.1210/endo.138.8.5311.
10. Minge CE, Robker RL, Norman RJ. PPAR gamma: coordinating metabolic and immune contributions to female fertility. Publishing Corporation PPAR Research. 2008;2008:243791. doi: https://doi.org/10.1155/2008/243791
11. Nicol CJ, Adachi M., Akiyama TE, Gonzalez FJ. PPAR gamma in endothelial cells influences high fat diet-induced hypertension. Am J Hypertens. 2005;4(1):549-56. doi: https://doi.org/10.1016/j.amjhyper.2004.10.032.
12. Puttabyatappa M, Vandevoort CA, Chaffin CL. HCG induced down-regulation of PPARg and liver X receptors promotes periovulatory progesterone synthesis by macaque granulosa cells. Endocrinology. 2010;151:5865-5872. doi: https://doi.org/10.1210/en.2010-0698
13. Hevener AL, Olefsky JM, Reichart D, et al. Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J. Clin. Invest. 2007;117:1658–1669. doi: https://doi.org/10.1172/JCI31561
14. Rieusset J, Andreelli F, Auboeuf D, et al. Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes. Diabetes. 1999;48:699–705. doi: https://doi.org/10.2337/diabetes.48.4.699.
15. Froment P, Gizard F, Defever D, et al. Peroxisome proliferator-activated receptors in reproductive tissues: from gametogenesis to parturition. J Endocrinol. 2006;189:199-209. doi: https://doi.org/10.1677/joe.1.06667.
16. Du Q, Yang S, Wang Y-J, et al. Effects of thiazolidinediones on polycystic ovary syndrome: a meta-analysis of randomized placebo-controlled trials. Adv Ther. 2012;29(9):763-74. doi: https://doi.org/10.1007/s12325-012-0044-6.
17. Seto-Young D, Paliou M, Schlosser J, et al. Direct Thiazolidinedione action in the human ovary: insulinindependent and insulin-sensitizing effects on steroidogenesis and insulin-like growth factor binding protein-1 production. J Clin Endocrinol Metab. 2005;90:6099-6105. doi: https://doi.org/10.1210/jc.2005-0469.
18. Minge CE, Ryan NK, Van Der Hoek KH, et al. Troglitazone regulates peroxisome proliferator-activated receptors and inducible nitric oxide synthase in murine ovarian macrophages. Biol Reprod. 2006;74:153–160. doi: https://doi.org/10.1095/biolreprod
19. Considine R V., Sinha MK, Heiman ML, et al. Serum Immunoreactive-Leptin Concentrations in Normal-Weight and Obese Humans. N Engl J Med. 1996;334(5):292-295. doi: https://doi.org/10.1056/NEJM199602013340503
20. Kolaczynski JW, Ohannesian JP, Considine RV, et al. Response of leptin to short–term and prolonged overfeeding in humans. J. Clin. Endo. Metab. 1996;81(11):4162-4165. doi: https://doi.org/10.1210/jcem.81.11.8923877.
21. Morton GJ, Gelling RW, Niswender KD, Morrison CD, Rhodes CJ, Schwartz MW. Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell Metab. 2005;2(6):411-420. doi: https://doi.org/10.1016/j.cmet.2005.10.009
22. Barzilai N, Wang J, Massilon D, et al. Leptin selectively decreases visceral adiposity and enhances insulin action. J Clin Invest. 1997;100:3105-3110. doi: https://doi.org/10.1172/JCI119865
23. Shimabukuro M, Koyama K, Chen G, et al. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci USA. 1997;94:4637-4641. doi: https://doi.org/10.1073/pnas.94.9.4637
24. Maffei M, Halaas J, Ravussin E., et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1(11):1155-61. doi: https://doi.org/10.1038/nm1195-1155
25. Marino JS, Xu Y, Hill JW. Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol Metab. 2011;37(9):2053-2079. doi: https://doi.org/10.1016/j.tem.2011.03.001
26. Ceddia RB, Koistinen HA, Zierath JR. Analysis of paradoxical observations on the association between leptin and insulin resistance. Sweeney GFASEB J. 2002;16(10):1163-76. doi: https://doi.org/10.1096/fj.02-0158rev
27. Park S, Ahn IS, Kim DS. Central infusion of leptin improves insulin resistance and suppresses beta–cell function, but not beta-cell mass, primarily through the sympathetic nervous system in a type 2 diabetic rat model. Life Sci. 2010;86(23-24):854-62. doi: https://doi.org/10.1016/j.lfs.2010.03.021
28. Laferrere B, Caixas A, Fried S, Bashore C, et al. A pulse of insulin and dexamethasone stimulates serum leptin in fasting human subjects. Eur J Endocrinol. 2002:839-845. doi: https://doi.org/10.1530/eje.0.1460839
29. Moreno-Aliaga MJ, Stanhope KL, Havel PJ. Transcriptional regulation of the leptin promoter by insulin-stimulated glucose metabolism in 3t3–l1 adipocytes. Biochem Biophys Res Commun. 2001;283:544–548. doi: https://doi.org/10.1006/bbrc.2001.4822.
30. Müller G, Ertl J, Gerl M, Preibisch G. Leptin impairs metabolic actions of Insulin in isolated rat adipocytes. J Biol Chem. 1997;272(16):10585-93. doi: https://doi.org/10.1074/jbc.272.16.10585.
31. Hill JW, Elias CF, Fukuda M, et al. Direct insulin and leptin action on pro–opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 2010;11(4):286-97. doi: https://doi.org/10.1016/j.cmet.2010.03.002
32. Lebrethon MC, Vandersmissen E, Gerard A, et al. In vitro stimulation of the prepubertal rat gonadotropin-releasing hormone pulse generator by leptin and neuropeptide Y through distinct mechanisms. Endocrinology. 2000;141:1464-9. doi: https://doi.org/10.1210/endo.141.4.7432.
33. Cunningham MJ, Clifton DK, Steiner RA. Leptin’s actions on the reproductive axis: perspectives and mechanisms. Biol Reprod. 1999;60:216-22. doi: https://doi.org/10.1095/biolreprod60.2.216.
34. Magni P, Vettor R, Pagano C, et al. Expression of a leptin receptor in immortalized gonadotropin-releasing hormone-secreting neurons. Endocrinology. 1999;140:1581-5. doi: https://doi.org/10.1210/endo.140.4.6622
35. Parent AS, Lebrethon MC, Gerard A, et al. Leptin effects on pulsatile gonadotropin releasing hormone secretion from the adult rat hypothalamus and interaction with cocaine and amphetamine regulated transcript peptide and neuropeptide. Regul Pept. 2000;92:17-24. doi: https://doi.org/10.1016/S0167-0115(00)00144-0
36. Lebrethon MC, Vandersmissen E, Gerard A, et al. Cocaine and amphetamine-regulated-transcript peptide mediation of leptin stimulatory effect on the rat gonadotropin-releasing hormone pulse generator in vitro. J Neuroendocrinol. 2000;12:383-5. doi: https://doi.org/10.1046/j.13652826.2000.00497.x.
37. Yu WH, Kimura M, Walczewska A, et al. Role of leptin in hypothalamic-pituitary function. Proc Natl Acad Sci USA. 1997;94:1023-8. doi: https://doi.org/10.1073/pnas.94.3.1023.
38. Ryan NK, Woodhouse CM, Van der Hoek KH, et al. Expression of Leptin and Its Receptor in the Murine Ovary: Possible Role in the Regulation of Oocyte Maturation1. Biol Reprod. 2002;66(5):1548-1554. doi: https://doi.org/10.1095/biolreprod66.5.1548
39. Zachow RJ, Magoffin MD. Direct Intraovarian Effects of Leptin: Impairment of the Synergistic Action of Insulin-Like Growth factor-I on Follicle-Stimulating Hormone-Dependent estradiol-17 Beta Production by Rat Ovarian Granulosa Cells. Endocrinology. 1997;138(2):847-50. doi: https://doi.org/10.1210/endo.138.2.5035
40. Becerril S, Rodríguez A, Catalán V, et al. Functional Relationship between Leptin and Nitric Oxide in Metabolism. Nutrients. 2019;11(9):2129. doi: https://doi.org/10.3390/nu11092129
41. Fajas L, Debril MB, Auwerx J. Peroxisome proliferatoractivated receptor-g: from adipogenesis to carcinogenesis. J Mol Endocrinol. 2001;27:1-9. doi: https://doi.org/10.1677/jme.0.0270001.
42. Tyagi S, Gupta P, Singh A, et al. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2:236-240. doi: https://doi.org/10.4103/2231-4040.90879
43. Kurowska P, Chmielinska J, Ptak A, Rak A. Expression of peroxisome proliferator-activated receptors is regulated by gonadotropins and steroid hormones in in vitro porcine ovarian follicles. Journal of Physiology and Pharmacology. 2017;68(6):823-832.
44. Komar CM. Peroxisome proliferator-activated receptors (PPARs) and ovarian function: implications for regulating steroidogenesis, differentiation, and tissue remodeling. Reprod Biol Endocrinol. 2005;3:41. doi: https://doi.org/10.1186/1477-7827-3-41
45. Walczak R, Tontonoz P. PPARadigms and PPARadoxes: Expanding roles for PPARγ in the control of lipid metabolism. J Lipid Res. 2002;43:177-186 doi: https://doi.org/10.1016/S0022-2275(20)30159-0.
46. Gavrilova O, Haluzik M, Matsusue K., et al. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. Biol Chem. 2003;278(36):34268-76. doi: https://doi.org/10.1074/jbc.M300043200
47. Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006;4:13-24. doi: https://doi.org/10.1016/j.cmet.2006.05.011.
48. Armoni M, Kritz N, Harel C, et al. Peroxisome proliferator-activated receptor-gamma represses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect. J Biol Chem. 2003;15;278(33):30614-23. doi: https://doi.org/10.1074/jbc.M304654200
49. Sharma AM, Staels B. Review: Peroxisome proliferator-activated receptor gamma and adipose tissue — understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab. 2007;92:386-395. doi: https://doi.org/10.1210/jc.2006-1268.
50. Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest. 1998;101:1354–1361. doi: https://doi.org/10.1172/JCI1235.
51. Komar CM, Braissant O, Wahli W, Curry TE. Expression and localization of PPARs in the rat ovary during follicular development and the periovulatory period. Endocrinology. 2001;142:4831-4838. doi: https://doi.org/10.1210/endo.142.11.8429.
52. Rak-Mardyla A, Drwal E. In vitro interaction between resistin and peroxisome proliferator-activated receptor g in porcine ovarian follicles. Reprod Fertil Dev. 2016; 28(3):357-368. doi: https://doi.org/10.1071/RD14053
53. Tarkun İ, Çetinarslan B, Türemen E, et al. Association between Circulating Tumor Necrosis Factor-Alpha, Interleukin-6, and Insulin Resistance in Normal-Weight Women with Polycystic Ovary Syndrome. Metab Syndr Relat Disord. 2006;4(2):122-128. doi: https://doi.org/10.1089/met.2006.4.122
54. Subbaramaiah K, Lin DT, Hart JC, Dannenberg AJ. Peroxisome proliferator-activated receptor gamma ligands suppress the transcriptional activation of cyclooxygenase-2: evidence for involvement of activator protein-1 and CREB-binding protein/ p300. J Biol Chem. 2001;276:12440-12448. doi: https://doi.org/10.1074/jbc.W119.012136
55. Lim H, Paria BC, Das SK, et al. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell. 1997;91:197-208. doi: https://doi.org/10.1016/s0092-8674(00)80402-x
56. De Vos P, Lefebvre AM, Miller SG, et al. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. J Clin Invest. 1996;98(4):1004-1009. doi: https://doi.org/10.1172/JCI118860.
57. Long L, Toda C, et al. PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding. J Clin Invest. 2014;124(9):4017–4027. doi: https://doi.org/10.1172/JCI76220
58. Buettner C, Muse ED, Cheng A, et al. Leptin controls adipose tissue lipogenesis via central, STAT3–independent mechanisms. Nat Med. 2008;14(6):667-675. doi: https://doi.org/10.1038/nm1775.
59. Qian H, Hausman GJ, Compton MM, et al. Leptin Regulation of Peroxisome Proliferator-Activated Receptor-Gamma, Tumor Necrosis Factor, and Uncoupling protein-2 Expression in Adipose Tissues. Biochem Biophys Res Commun. 1998;246(3):660-7. doi: https://doi.org/10.1006/bbrc.1998.8680.
60. Zhang W, Della-Fera MA, Hartzell DL, et al. Adipose tissue gene expression profiles in ob/ob mice treated with leptin. Life Sciences. 2008;83(2008):35-42. doi: https://doi.org/10.1016/j.lfs.2008.04.021
61. Mitchell M, Armstrong DT, Robker RL, Norman RJ. Adipokines: implications for female fertility and obesity. Reproduction. 2005;130(5):583-597. doi: https://doi.org/10.1530/rep.1.00521
62. Mu YM, Yanase T, Nishi Y, et al. Insulin sensitizer, troglitazone, directly inhibits aromatase activity in human ovarian granulosa cells. Biochem Biophys Res Commun. 2000; 271:710-713. doi: https://doi.org/10.1006/bbrc.2000.2701.
63. Pasquali R, Gambineri A. Polycystic ovary syndrome: a multifaceted disease from adolescence to adult age. Annals of the New York Academy of Sciences. 2006;1092:158-174. doi: https://doi.org/10.1196/annals.1365.014.
64. Daghestani MH, Daghestani M, Daghistani M, et al. Study of ghrelin and leptin levels and their relationship to metabolic profiles in obese and lean Saudi women with polycystic ovary syndrome (PCOS). Lipids Health Dis. 2018;17:195. doi: https://doi.org/10.1186/s12944-018-0839-9
65. Vidal H, Auboeuf D, De Vos P, et al. The expression of ob gene is not acutely regulated by Insulin and fasting in human abdominal subcutaneous adipose tissue. J Clin Invest. 1996;98(2):251-255. doi: https://doi.org/10.1172/JCI118786.
66. Pinilla L, Seoane L, Gonzalez L, et al. Regulation of serum leptin levels by gonadal function in rats. Eur J Endocrinol. 1999:468-473. doi: https://doi.org/10.1530/eje.0.1400468
67. Abir R, Ao A, Jin S, et al. Leptin and its receptors in human fetal and adult ovaries. Fertility and Sterility. 2005; 84 (6):1779-1782. doi: https://doi.org/10.1016/j.fertnstert.2005.05.067
68. De Placido G, Alviggi C, Clarizia R, et al. Intra-follicular leptin concentration as a predictive factor for in vitro oocyte fertilization in assisted reproductive techniques. Journal of Endocrinological Investigation. 2006; 29(8):719-726. doi: https://doi.org/10.1007/BF03344182.
69. Li M-G, Ding G-L, Chen X-J, et al. Association of serum and follicular fluid leptin concentrations with granulosa cell phosphorylated signal transducer and activator of transcription 3 expression in fertile patients with polycystic ovarian syndrome. Journal of Clinical Endocrinology and Metabolism. 2007;92(12):4771-4776. doi: https://doi.org/10.1210/jc.2007-0978.
70. Savastano S, Valentino R, Di Somma C, et al. Serum 25- Hydroxyvitamin D Levels, phosphoprotein enriched in diabetes gene product (PED/PEA-15) and leptin-to-adiponectin ratio in women with PCOS. Nutrition and Metabolism. 2011;8:84. doi: https://doi.org/10.1186/1743-7075-8-84.
71. Qu F, Wang FF, Yin R, et al. A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. J Mol Med (Berl). 2012;90:911-923. doi: https://doi.org/10.1007/s00109-012-0881-4
72. Froment P, Touraine P. Thiazolidinediones and Fertility in Polycystic Ovary Syndrome (PCOS). PPAR Res. 2006;2006:73986. doi: https://doi.org/10.1155/PPAR/2006/73986
73. Lee JY, Tae JC, Kim CH, et al. Expression of the genes for peroxisome proliferator activated receptor-γ, cyclooxygenase-2, and proinflammatory cytokines in granulosa cells from women with polycystic ovary syndrome. Clin Exp Reprod Med. 2017;44(3):146-151. doi: https://doi.org/10.5653/cerm.2017.44.3.146.
74. Jansen E, Laven JS, Dommerholt HB, et al. Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol. 2004;18:3050-3063. doi: https://doi.org/10.1210/me.2004-0074
75. Vitti M, Di Emidio G, Di Carlo M, et al. Peroxisome Proliferator-Activated Receptors in Female Reproduction and Fertility. PPAR Res. 2016;2016:1-12. doi: https://doi.org/ 10.1155/2016/4612306
76. Jiang C, Ting AT, Seed B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391(6662):82-86. doi: https://doi.org/10.1038/34184.
77. Al-Musawy SHH, Al-Saimary IE, Flaifil MS Levels of cytokines profile in polycystic ovary syndrome. Medical Journal of Babilon. 2018; 15(2):124-128. doi: https://doi.org/10.4103/MJBL.MJBL_32_18.
78. Guo Q, Shan J, Xu Y, et al. Pioglitazone Metformin Complex Improves Polycystic Ovary Syndrome Comorbid Psychological Distress via Inhibiting NLRP3 Inflammasome Activation: A Prospective Clinical Study. Mediators Inflamm. 2020;2020:1-7. doi: https://doi.org/10.1155/2020/3050487.
79. Sheneman E, Bairova T, Ievleva K, et al. GP222 Clinical and metabolic parameters in girls-carriers of LEPR rs1137100 with android and gynoid obesity. In: Abstracts. BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health; 2019:A120.3-A121. doi: https://doi.org/10.1136/archdischild-2019-epa.281.
80. Ievleva KD, Bairova TA, Sheneman EA, et al. The protective effect of G-allele of PPARG2 rs1801282 polymorphism against overweight and obesity in mongoloid adolescents. Journal of Medical and Biological Research. 2019;7(4):452-463. (In Russ.). doi: https://doi.org/10.17238/issn2542-1298.2019.7.4.452
81. Liang J, Lan J, Li M, Wang F. Associations of leptin receptor and peroxisome proliferator-activated receptor gamma polymorphisms with polycystic ovary syndrome: a meta-analysis. Ann Nutr Metab. 2019; 75(1):1-8. doi: https://doi.org/10.1159/000500996.
Supplementary files
Review
For citations:
Ievleva K.D., Danusevich I.N., Suturina L.V. Role of leptin and nuclear receptor PPARγ in PCOS pathogenesis. Problems of Endocrinology. 2020;66(6):74-80. (In Russ.) https://doi.org/10.14341/probl12620

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).