Gene and cell therapy of adrenal pathology: achievements and prospects
https://doi.org/10.14341/probl12818
Abstract
Our current understanding of the molecular and cellular mechanisms in tissues and organs during normal and pathological conditions opens up substantial prospects for the development of novel approaches to treatment of various diseases. For instance, lifelong replacement therapy is no longer mandatory for the management of some monogenic hereditary diseases. Genome editing techniques that have emerged in the last decade are being actively investigated as tools for correcting mutations in affected organs. Furthermore, new protocols for obtaining various types of human and animal cells and cellular systems are evolving, increasingly reflecting the real structures in vivo. These methods, together with the accompanying gene and cell therapy, are being actively developed and several approaches are already undergoing clinical trials. Adrenal insufficiency caused by a variety of factors can potentially be the target of such therapeutic strategies. The adrenal gland is a highly organized organ, with multiple structural components interacting with each other via a complex network of endocrine and paracrine signals. This review summarizes the findings of studies in the field of structural organization and functioning of the adrenal gland at the molecular level, as well as the modern approaches to the treatment of adrenal pathologies.
About the Authors
O. V. GlazovaRussian Federation
Olga V. Glazova
11 Dm. Ulyanova street, 117292 Moscow
SPIN: 5689-7421
M. V. Vorontsova
Maria V. Vorontsova
Moscow, Dolgoprudny
SPIN: 4168-6851
N. Sakr
Nawar Sakr
Dolgoprudny
SPIN: 3171-7557
L. V. Shevkova
Liudmila V. Shevkova
Moscow, Dolgoprudny
SPIN: 5799-0350
N. A. Onyanov
Nikita A. Onyanov
Dolgoprudny
SPIN: 7244-2870
S. A. Kaziakhmedova
Samira A. Kaziakhmedova
Dolgoprudny
SPIN: 8278-0000
P. Y. Volchkov
Pavel Y. Volchkov
Moscow, Dolgoprudny
SPIN: 9611-8768
References
1. Yate R, Katugampola H, Cavlan D, et al. Adrenocortical Development, Maintenance, and Disease. Curr Top Dev Biol. 2013;106:239-312. doi: https://doi.org/10.1016/B978-0-12-416021-7.00007-9
2. Steenblock C, Rubin de Celis MF, Delgadillo Silva LF, et al. Isolation and characterization of adrenocortical progenitors involved in the adaptation to stress. Proc Natl Acad Sci. 2018;115(51):12997-13002. doi: https://doi.org/10.1073/pnas.1814072115
3. Nishimoto K, Harris RBS, Rainey WE, Seki T. Sodium Deficiency Regulates Rat Adrenal Zona Glomerulosa Gene Expression. Endocrinology. 2014;155(4):1363-1372. doi: https://doi.org/10.1210/en.2013-1999
4. Benc D, Icin T, Pejakovic S, et al. Glucocorticoid therapy and adrenal suppression. Med Pregl. 2017;70(11-12):465-471. doi: https://doi.org/10.2298/MPNS1712465B
5. Charmandari E, Nicolaides NC, Chrousos GP. Adrenal insufficiency. Lancet. 2014;383(9935):2152-2167. doi: https://doi.org/10.1016/S0140-6736(13)61684-0
6. Kareva MA, Chugunov IS. Federal clinical practice guidelines on the management of the patients presenting with congenital adrenal hyperplasia. Problems of Endocrinology. 2014;60(2):42-50. (In Russ.). doi: https://doi.org/10.14341/probl201460242-50
7. Buonocore F, Achermann JC. Primary adrenal insufficiency: New genetic causes and their long-term consequences. Clin Endocrinol (Oxf ). 2020;92(1):11-20. doi: https://doi.org/10.1111/cen.14109
8. Turcu AF, Auchus RJ. Novel treatment strategies in congenital adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes. 2016;23(3):225-232. doi: https://doi.org/10.1097/MED.0000000000000256
9. Maharaj A, Maudhoo A, Chan LF, et al. Isolated glucocorticoid deficiency: Genetic causes and animal models. J Steroid Biochem Mol Biol. 2019;189:73-80. doi: https://doi.org/10.1016/j.jsbmb.2019.02.012
10. Gotoh H, Sagai T, Hata J-I, et al. Steroid 21-Hydroxylase Deficiency in Mice*. Endocrinology. 1988;123(4):1923-1927. doi: https://doi.org/10.1210/endo-123-4-1923
11. Riepe FG, Tatzel S, Sippell WG, et al. Congenital Adrenal Hyperplasia: The Molecular Basis of 21-Hydroxylase Deficiency in H-2aw18 Mice. Endocrinology. 2005;146(6):2563-2574. doi: https://doi.org/10.1210/en.2004-1563
12. Hornstein SR, Tajima T, Eisenhofer G, et al. Adrenomedullary function is severely impaired in 21‐hydroxylase‐deficient mice. FASEB J. 1999;13(10):1185-1194. doi: https://doi.org/10.1096/fasebj.13.10.1185
13. Tajima T, Okada T, Ma X-M, et al. Restoration of adrenal steroidogenesis by adenovirus-mediated transfer of human cytochromeP450 21-hydroxylase into the adrenal gland of21- hydroxylase-deficient mice. Gene Ther. 1999;6(11):1898-1903. doi: https://doi.org/10.1038/sj.gt.3301018
14. Naiki Y, Miyado M, Horikawa R, et al. Extra-adrenal induction of Cyp21a1 ameliorates systemic steroid metabolism in a mouse model of congenital adrenal hyperplasia. Endocr J. 2016;63(10):897-904. doi: https://doi.org/10.1507/endocrj.EJ16-0112
15. Perdomini M, Dos Santos C, Goumeaux C, et al. An AAVrh10- CAG-CYP21-HA vector allows persistent correction of 21-hydroxylase deficiency in a Cyp21−/− mouse model. Gene Ther. 2017;24(5):275-281. doi: https://doi.org/10.1038/gt.2017.10
16. Markmann S, De BP, Reid J, et al. Biology of the Adrenal Gland Cortex Obviates Effective Use of Adeno-Associated Virus Vectors to Treat Hereditary Adrenal Disorders. Hum Gene Ther. 2018;29(4):403-412. doi: https://doi.org/10.1089/hum.2017.203
17. Al-Dosari MS, Gao X. Nonviral Gene Delivery: Principle, Limitations, and Recent Progress. AAPS J. 2009;11(4):671. doi: https://doi.org/10.1208/s12248-009-9143-y
18. Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science (80- ). 2016;351(6271):400-403. doi: https://doi.org/10.1126/science.aad5725
19. Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science (80- ). 2016;351(6271):403-407. doi: https://doi.org/10.1126/science.aad5143
20. Tabebordbar M, Zhu K, Cheng JKW, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science (80-). 2016;351(6271):407-411. doi: https://doi.org/10.1126/science.aad5177
21. Yang Y, Wang L, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34(3):334-338. doi: https://doi.org/10.1038/nbt.3469
22. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346-358. doi: https://doi.org/10.1038/nrg1066
23. Chen S, Du K, Zou C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther. 2020;11(1):275. doi: https://doi.org/10.1186/s13287-020-01793-6
24. Thomas M, Northrup SR, Hornsby PJ. Adrenocortical tissue formed by transplantation of normal clones of bovine adrenocortical cells in scid mice replaces the essential functions of the animals’ adrenal glands. Nat Med. 1997;3(9):978-983. doi: https://doi.org/10.1038/nm0997-978
25. Thomas M, Hornsby PJ. Transplantation of primary bovine adrenocortical cells into scid mice. Mol Cell Endocrinol. 1999;153(1-2):125-136. doi: https://doi.org/10.1016/S0303-7207(99)00070-2
26. Thomas M, Wang X, Hornsby PJ. Human adrenocortical cell xenotransplantation: Model of cotransplantation of human adrenocortical cells and 3T3 cells in scid mice to form vascularized functional tissue and prevent adrenal insufficiency. Xenotransplantation. 2002;9(1):58-67. doi: https://doi.org/10.1046/j.0908-665x.2001.00138.x
27. Popnikolov NK, Hornsby PJ. Subcutaneous Transplantation of Bovine and Human Adrenocortical Cells in Collagen Gel in scid Mice. Cell Transplant. 1999;8(6):617-625. doi: https://doi.org/10.1177/096368979900800608
28. Dunn JCY, Chu Y, Lam MM, et al. Adrenal cortical cell transplantation. J Pediatr Surg. 2004;39(12):1856-1858. doi: https://doi.org/10.1016/j.jpedsurg.2004.08.006
29. Zupekan T, Dunn JCY. Adrenocortical cell transplantation reverses a murine model of adrenal failure. J Pediatr Surg. 2011;46(6):1208-1213. doi: https://doi.org/10.1016/j.jpedsurg.2011.03.057
30. Allen RA, Seltz LM, Jiang H, et al. Adrenal Extracellular Matrix Scaffolds Support Adrenocortical Cell Proliferation and Function In Vitro. Tissue Eng Part A. 2010;16(11):3363-3374. doi: https://doi.org/10.1089/ten.tea.2010.0005
31. Balyura M, Gelfgat E, Ehrhart-Bornstein M, et al. Transplantation of bovine adrenocortical cells encapsulated in alginate. Proc Natl Acad Sci. 2015;112(8):2527-2532. doi: https://doi.org/10.1073/pnas.1500242112
32. Teebken OE, Scheumann GFW. Differentiated corticosteroid production and regeneration after selective transplantation of cultured and noncultured adrenocortical cells in the adrenalectomized RAT1. Transplantation. 2000;70(5):836-843. doi: https://doi.org/10.1097/00007890-200009150-00022
33. Mariniello K, Ruiz-Babot G, McGaugh EC, et al. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne). 2019;10:772. doi: https://doi.org/10.3389/fendo.2019.00772
34. Freedman BD, Kempna PB, Carlone DL, et al. Adrenocortical Zonation Results from Lineage Conversion of Differentiated Zona Glomerulosa Cells. Dev Cell. 2013;26(6):666-673. doi: https://doi.org/10.1016/j.devcel.2013.07.016
35. Dunn JCY, Chu Y, Qin HH, Zupekan T. Transplantation of Adrenal Cortical Progenitor Cells Enriched by Nile Red. J Surg Res. 2009;156(2):317-324. doi: https://doi.org/10.1016/j.jss.2009.04.021
36. Thomas M, Suwa T, Yang L, et al. Cooperation of hTERT, SV40 T Antigen and Oncogenic Ras in Tumorigenesis: A Cell Transplantation Model Using Bovine Adrenocortical Cells. Neoplasia. 2002;4(6):493-500. doi: https://doi.org/10.1038/sj.neo.7900262
37. Dimitrioglou N, Kanelli M, Papageorgiou E, Karatzas T, Hatziavramidis D. Paving the way for successful islet encapsulation. Drug Discov Today. 2019;24(3):737-748. doi: https://doi.org/10.1016/j.drudis.2019.01.020
38. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126(4):663-676. doi: https://doi.org/10.1016/j.cell.2006.07.024
39. Crawford PA, Sadovsky Y, Milbrandt J. Nuclear receptor steroidogenic factor 1 directs embryonic stem cells toward the steroidogenic lineage. Mol Cell Biol. 1997;17(7):3997-4006. doi: https://doi.org/10.1128/MCB.17.7.3997
40. Yazawa T, Kawabe S, Inaoka Y, et al. Differentiation of mesenchymal stem cells and embryonic stem cells into steroidogenic cells using steroidogenic factor-1 and liver receptor homolog-1. Mol Cell Endocrinol. 2011;336(1-2):127-132. doi: https://doi.org/10.1016/j.mce.2010.11.025
41. Sonoyama T, Sone M, Honda K, et al. Differentiation of Human Embryonic Stem Cells and Human Induced Pluripotent Stem Cells into Steroid-Producing Cells. Endocrinology. 2012;153(9):4336-4345. doi: https://doi.org/10.1210/en.2012-1060
42. Gondo S, Yanase T, Okabe T, et al. SF-1/Ad4BP transforms primary long-term cultured bone marrow cells into ACTH-responsive steroidogenic cells. Genes to Cells. 2004;9(12):1239-1247. doi: https://doi.org/10.1111/j.1365-2443.2004.00801.x
43. Tanaka T, Aoyagi C, Mukai K, et al. Extension of Survival in Bilaterally Adrenalectomized Mice by Implantation of SF-1/Ad4BPInduced Steroidogenic Cells. Endocrinology. 2020;161(3):1-11. doi: https://doi.org/10.1210/endocr/bqaa007
44. Gondo S, Okabe T, Tanaka T, et al. Adipose Tissue-Derived and Bone Marrow-Derived Mesenchymal Cells Develop into Different Lineage of Steroidogenic Cells by Forced Expression of Steroidogenic Factor 1. Endocrinology. 2008;149(9):4717-4725. doi: https://doi.org/10.1210/en.2007-1808
45. Yazawa T, Mizutani T, Yamada K, et al. Differentiation of Adult Stem Cells Derived from Bone Marrow Stroma into Leydig or Adrenocortical Cells. Endocrinology. 2006;147(9):4104-4111. doi: https://doi.org/10.1210/en.2006-0162
46. Yazawa T, Inanoka Y, Mizutani T, et al. Liver Receptor Homolog-1 Regulates the Transcription of Steroidogenic Enzymes and Induces the Differentiation of Mesenchymal Stem Cells into Steroidogenic Cells. Endocrinology. 2009;150(8):3885-3893. doi: https://doi.org/10.1210/en.2008-1310
47. Yazawa T, Inaoka Y, Okada R, et al. PPAR-γ Coactivator-1α Regulates Progesterone Production in Ovarian Granulosa Cells with SF-1 and LRH-1. Mol Endocrinol. 2010;24(3):485-496. doi: https://doi.org/10.1210/me.2009-0352
48. Wei X, Peng G, Zheng S, Wu X. Differentiation of umbilical cord mesenchymal stem cells into steroidogenic cells in comparison to bone marrow mesenchymal stem cells. Cell Prolif. 2012;45(2):101-110. doi: https://doi.org/10.1111/j.1365-2184.2012.00809.x
49. Ruiz-Babot G, Balyura M, Hadjidemetriou I, et al. Modeling Congenital Adrenal Hyperplasia and Testing Interventions for Adrenal Insufficiency Using Donor-Specific Reprogrammed Cells. Cell Rep. 2018;22(5):1236-1249. doi: https://doi.org/10.1016/j.celrep.2018.01.003
50. Lancaster MA, Huch M. Disease modelling in human organoids. Dis Model Mech. 2019;12(7). doi: https://doi.org/10.1242/dmm.039347
51. Poli G, Sarchielli E, Guasti D, et al. Human fetal adrenal cells retain age‐related stem‐ and endocrine‐differentiation potential in culture. FASEB J. 2019;33(2):2263-2277. doi: https://doi.org/10.1096/fj.201801028RR
Supplementary files
|
1. Рисунок 1. Схема строения коры надпочечников человека с указанием зон, а также основных генов и стероидов каждой зоны. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(324KB)
|
Indexing metadata ▾ |
Review
For citations:
Glazova O.V., Vorontsova M.V., Sakr N., Shevkova L.V., Onyanov N.A., Kaziakhmedova S.A., Volchkov P.Y. Gene and cell therapy of adrenal pathology: achievements and prospects. Problems of Endocrinology. 2021;67(6):80-89. (In Russ.) https://doi.org/10.14341/probl12818

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).