Adrenal glands stem cells: general signaling pathways
https://doi.org/10.14341/probl12819
Abstract
Nowadays stem cells of adult type are attractive in case of active development of cell and genome technologies. They are the target of new therapeutic approaches, which are based on correction of mutations or replenishment of organs, that were damaged by autoimmune reactions, aging or other pathological processes. Also stem cells, including patient-specific (induced Pluripotent Stem Cells, iPSCs), and obtained by differentiation from them tissue cultures and organoids are the closest models to in vivo researches on humans, which gives an opportunity to get more relevant data while testing different therapeutic approaches and pharmacological drugs. The main molecular pathways, that are essential for homeostasis of a cortex of a adrenal gland — compound, structurally and functionally heterogeneous organ, is described the presented review. The adrenal cortex is renewing during the organism’s ontogenesis at the expense of the pool of stem and progenitors cells, which are in tight junctions with differentiated steroidogenic cells and which are under constant control of endocrine and paracrine signals. The understanding of signaling pathways and interactions of different cell types will give an opportunity to develop the most suitable protocols for obtaining cells of adrenal gland cortex in a different stages of differentiation to use them in scientific and medical purposes.
About the Authors
O. V. GlazovaRussian Federation
Olga V. Glazova
11 Dm. Ulyanova street, 117292 Moscow
eLibrary SPIN: 5689-7421
M. V. Vorontsova
Maria V. Vorontsova
Moscow, Dolgoprudny
eLibrary SPIN: 4168-6851
L. V. Shevkova
Liudmila V. Shevkova
Moscow, Dolgoprudny
eLibrary SPIN: 5799-0350
N. Sakr
Nawar Sakr
Dolgoprudny
eLibrary SPIN: 3171-7557
N. A. Onyanov
Nikita A. Onyanov
Dolgoprudny
eLibrary SPIN: 7244-2870
S. A. Kaziakhmedova
Samira A. Kaziakhmedova
Dolgoprudny
eLibrary SPIN: 8278-0000
P. Y. Volchkov
Pavel Y. Volchkov
Moscow, Dolgoprudny
eLibrary SPIN: 9611-8768
References
1. Hamme GD, Basham KJ. Stem cell function and plasticity in the normal physiology of the adrenal cortex. Mol Cell Endocrinol. 2021;519:111043. doi: https://doi.org/10.1016/j.mce.2020.111043
2. Schimmer BP, White PC. Minireview: Steroidogenic Factor 1: Its Roles in Differentiation, Development, and Disease. Mol Endocrinol. 2010;24(7):1322-1337. doi: https://doi.org/10.1210/me.2009-0519
3. Zubair M, Parker KL, Morohashi K. Developmental Links between the Fetal and Adult Zones of the Adrenal Cortex Revealed by Lineage Tracing. Mol Cell Biol. 2008;28(23):7030-7040. doi: https://doi.org/10.1128/MCB.00900-08
4. Ward RD, Raetzman LT, Suh H, et al. Role of PROP1 in Pituitary Gland Growth. Mol Endocrinol. 2005;19(3):698-710. doi: https://doi.org/10.1210/me.2004-0341
5. Mesiano S, Jaffe RB. Developmental and Functional Biology of the Primate Fetal Adrenal Cortex*. Endocr Rev. 1997;18(3):378-403. doi: https://doi.org/10.1210/edrv.18.3.0304
6. Xing Y, Morohashi K, Ingraham HA, Hammer GD. Timing of adrenal regression controlled by synergistic interaction between Sf1 SUMOylation and Dax1. Development. 2017;144(20):3798-3807. doi: https://doi.org/10.1242/dev.150516
7. Xing Y, Lerario AM, Rainey W, Hammer GD. Development of Adrenal Cortex Zonation. Endocrinol Metab Clin North Am. 2015;44(2):243-274. doi: https://doi.org/10.1016/j.ecl.2015.02.001
8. Ching S, Vilain E. Targeted disruption of Sonic Hedgehog in the mouse adrenal leads to adrenocortical hypoplasia. Genesis. 2009;47(9):628-637. doi: https://doi.org/10.1002/dvg.20532
9. Huang C-CJ, Miyagawa S, Matsumaru D, et al. Progenitor Cell Expansion and Organ Size of Mouse Adrenal Is Regulated by Sonic Hedgehog. Endocrinology. 2010;151(3):1119-1128. doi: https://doi.org/10.1210/en.2009-0814
10. King P, Paul A, Laufer E. Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages. Proc Natl Acad Sci. 2009;106(50):21185-21190. doi: https://doi.org/10.1073/pnas.0909471106
11. Guasti L, Cavlan D, Cogger K, et al. Dlk1 Up-Regulates Gli1 Expression in Male Rat Adrenal Capsule Cells Through the Activation of β1 Integrin and ERK1/2. Endocrinology. 2013;154(12):4675-4684. doi: https://doi.org/10.1210/en.2013-1211
12. Wood MA, Acharya A, Finco I, et al. Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus. Development. 2013;140(22):4522-4532. doi: https://doi.org/10.1242/dev.092775
13. Finco I, Lerario AM, Hammer GD. Sonic Hedgehog and WNT Signaling Promote Adrenal Gland Regeneration in Male Mice. Endocrinology. 2018;159(2):579-596. doi: https://doi.org/10.1210/en.2017-03061
14. Freedman BD, Kempna PB, Carlone DL, et al. Adrenocortical Zonation Results from Lineage Conversion of Differentiated Zona Glomerulosa Cells. Dev Cell. 2013;26(6):666-673. doi: https://doi.org/10.1016/j.devcel.2013.07.016
15. Grabek A, Dolfi B, Klein B, et al. The Adult Adrenal Cortex Undergoes Rapid Tissue Renewal in a SexSpecific Manner. Cell Stem Cell. 2019;25(2):290-296.e2. doi: https://doi.org/10.1016/j.stem.2019.04.012
16. Val P, Martinez-Barbera J-P, Swain A. Adrenal development is initiated by Cited2 and Wt1 through modulation of Sf-1 dosage. Development. 2007;134(12):2349-2358. doi: https://doi.org/10.1242/dev.004390
17. Bandiera R, Vidal VPI, Motamedi FJ, et al. WT1 Maintains AdrenalGonadal Primordium Identity and Marks a Population of AGP-like Progenitors within the Adrenal Gland. Dev Cell. 2013;27(1):5-18. doi: https://doi.org/10.1016/j.devcel.2013.09.003
18. Wilhelm D, Englert C. The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes Dev. 2002;16(14):1839-1851. doi: https://doi.org/10.1101/gad.220102
19. Mathieu M, Drelon C, Rodriguez S, et al. Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex. Proc Natl Acad Sci. 2018;115(52):E12265-E12274. doi: https://doi.org/10.1073/pnas.1809185115
20. Kim K-A, Zhao J, Andarmani S, et al. R-Spondin Proteins: A Novel Link to β-catenin Activation. Cell Cycle. 2006;5(1):23-26. doi: https://doi.org/10.4161/cc.5.1.2305
21. Vidal V, Sacco S, Rocha AS, et al. The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3. Genes Dev. 2016;30(12):1389-1394. doi: https://doi.org/10.1101/gad.277756.116
22. Zhao B, Tumaneng K, Guan K-L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13(8):877-883. doi: https://doi.org/10.1038/ncb2303
23. Levasseur A, St-Jean G, Paquet M, et al. Targeted Disruption of YAP and TAZ Impairs the Maintenance of the Adrenal Cortex. Endocrinology. 2017;158(11):3738-3753. doi: https://doi.org/10.1210/en.2017-00098
24. Abduch RH, Bueno AC, Leal LF, et al. Unraveling the expression of the oncogene YAP1 , a Wnt/beta-catenin target, in adrenocortical tumors and its association with poor outcome in pediatric patients. Oncotarget. 2016;7(51):84634-84644. doi: https://doi.org/10.18632/oncotarget.12382
25. Ménard A, Abou Nader N, Levasseur A, et al. Targeted Disruption of Lats1 and Lats2 in Mice Impairs Adrenal Cortex Development and Alters Adrenocortical Cell Fate. Endocrinology. 2020;161(6). doi: https://doi.org/10.1210/endocr/bqaa052
26. Steenblock C, Rubin de Celis MF, Delgadillo Silva LF, et al. Isolation and characterization of adrenocortical progenitors involved in the adaptation to stress. Proc Natl Acad Sci. 2018;115(51):12997-13002. doi: https://doi.org/10.1073/pnas.1814072115
27. Steenblock C, Rubin de Celis MF, Androutsellis-Theotokis A, et al. Adrenal cortical and chromaffin stem cells: Is there a common progeny related to stress adaptation? Mol Cell Endocrinol. 2017;441:156-163. doi: https://doi.org/10.1016/j.mce.2016.09.011
28. Freedman BD, Kempna PB, Carlone DL, et al. Adrenocortical Zonation Results from Lineage Conversion of Differentiated Zona Glomerulosa Cells. Dev Cell. 2013;26(6):666-673. doi: https://doi.org/10.1016/j.devcel.2013.07.016
29. Vinson GP. Functional Zonation of the Adult Mammalian Adrenal Cortex. Front Neurosci. 2016;10. doi: https://doi.org/10.3389/fnins.2016.00238
30. Drelon C, Berthon A, Sahut-Barnola I, et al. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nat Commun. 2016;7(1):12751. doi: https://doi.org/10.1038/ncomms12751
31. Farin HF, Jordens I, Mosa MH, et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 2016;530(7590):340-343. doi: https://doi.org/10.1038/nature16937
32. Wiese KE, Nusse R, van Amerongen R. Wnt signalling: conquering complexity. Development. 2018;145(12). doi: https://doi.org/10.1242/dev.165902
33. Basham KJ, Rodriguez S, Turcu AF, et al. A ZNRF3- dependent Wnt/β-catenin signaling gradient is required for adrenal homeostasis. Genes Dev. 2019;33(3-4):209-220. doi: https://doi.org/10.1101/gad.317412.118
34. Heikkilä M, Peltoketo H, Leppäluoto J, et al. Wnt-4 Deficiency Alters Mouse Adrenal Cortex Function, Reducing Aldosterone Production. Endocrinology. 2002;143(11):4358-4365. doi: https://doi.org/10.1210/en.2002-220275
35. Kim AC, Reuter AL, Zubair M, et al. Targeted disruption of β-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development. 2008;135(15):2593-2602. doi: https://doi.org/10.1242/dev.021493
36. Walczak EM, Kuick R, Finco I, et al. Wnt Signaling Inhibits Adrenal Steroidogenesis by Cell-Autonomous and Non–CellAutonomous Mechanisms. Mol Endocrinol. 2014;28(9):1471-1486. doi: https://doi.org/10.1210/me.2014-1060
37. Mandel H, Shemer R, Borochowitz ZU, et al. SERKAL Syndrome: An Autosomal-Recessive Disorder Caused by a Loss-ofFunction Mutation in WNT4. Am J Hum Genet. 2008;82(1):39-47. doi: https://doi.org/10.1016/j.ajhg.2007.08.005
38. Pihlajoki M, Dörner J, Cochran RS, et al. Adrenocortical Zonation, Renewal, and Remodeling. Front Endocrinol (Lausanne). 2015;6. doi: https://doi.org/10.3389/fendo.2015.00027
39. Zanaria E, Muscatelli F, Bardoni B, et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature. 1994;372(6507):635-641. doi: https://doi.org/10.1038/372635a0
40. Muscatelli F, Strom TM, Walker AP, et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature. 1994;372(6507):672-676. doi: https://doi.org/10.1038/372672a0
41. Scheys JO, Heaton JH, Hammer GD. Evidence of Adrenal Failure in Aging Dax1-Deficient Mice. Endocrinology. 2011;152(9):3430-3439. doi: https://doi.org/10.1210/en.2010-0986
42. Lotfi CFP, de Mendonca POR. Comparative Effect of ACTH and Related Peptides on Proliferation and Growth of Rat Adrenal Gland. Front Endocrinol (Lausanne). 2016;7:39. doi: https://doi.org/10.3389/fendo.2016.00039
43. Novoselova TV, Hussain M, King PJ, et al. MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation. FASEB J. 2018;32(11):6186-6196. doi: https://doi.org/10.1096/fj.201701274RR
44. Ruiz-Babot G, Balyura M, Hadjidemetriou I, et al. Modeling Congenital Adrenal Hyperplasia and Testing Interventions for Adrenal Insufficiency Using Donor-Specific Reprogrammed Cells. Cell Rep. 2018;22(5):1236-1249. doi: https://doi.org/10.1016/j.celrep.2018.01.003
45. Nolbrant S, Heuer A, Parmar M, Kirkeby A. Generation of highpurity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation. Nat Protoc. 2017;12(9):1962-1979. doi: https://doi.org/10.1038/nprot.2017.078
Supplementary files
|
1. Рисунок 1. Схематичное строение коры надпочечников с указанием основных типов стволовых клеток и прогениторов, локализующихся в капсуле и клубочковой зоне. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(278KB)
|
Indexing metadata ▾ |
Review
For citations:
Glazova O.V., Vorontsova M.V., Shevkova L.V., Sakr N., Onyanov N.A., Kaziakhmedova S.A., Volchkov P.Y. Adrenal glands stem cells: general signaling pathways. Problems of Endocrinology. 2021;67(6):90-97. (In Russ.) https://doi.org/10.14341/probl12819

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).