The use of radioactive substances in medicine — history and development prospects
https://doi.org/10.14341/probl12824
Abstract
Nuclear medicine (NM) is a medical specialty that uses radionuclides (radioactive tracers) and ionising radiation for diagnostic and therapeutic (theranostic) purposes. Nuclear medicine arose and developed at the intersection of physics, chemistry and clinical medicine. The radiation emitted by radioisotopes can consist of gamma-, beta- and alpha emission, or it’s combination. Radioisotope of choice for medical purposes should have futher requirements: low radiotoxicity, suitable type of radiation, energy and half-life (several minutes to several hours and days), and also convenient detection of gamma ray radiation. The radionuclide is part of radiopharmaceutical (RP) and acts as its indicator. RP accumulates in morphological structures, becomes a carrier of coordinated information from patient to gamma camera or other equipment and reflects the dynamics of processes occurring in the examined organ. In 2021 NM celebrates its 80th anniversary. The trajectory of NM combines modern methods of radiotheranostics and applied genomic and post-genomic technologies.
About the Authors
M. S. SheremetaRussian Federation
Marina S. Sheremeta, MD, PhD
Moscow
eLibrary SPIN:7845-2194
A. A. Trukhin
Russian Federation
Alexey A. Trukhin
Moscow
eLibrary SPIN: 4398-9536
M. O. Korchagina
Russian Federation
Maria O. Korchagina
8/2 Trubetskaya Street, 119991 Moscow
eLibrary SPIN:7834-5652
References
1. Al-jubeh W, Shaheen A, Zalloum O. Radioiodine I-131 for diagnosing and treatment of thyroid diseases. Conf. Paper. 2012;6.
2. Jeelani S, Jagat Reddy R, Maheswaran T, et al. Theranostics: A treasured tailor for tomorrow. J Pharm Bioallied Sci. 2014;6(5):6. doi: https://doi.org/10.4103/0975-7406.137249
3. Blahd W. Ben cassen and the development of the rectilinear scanner. Semin Nucl Med. 1996;26(3):165-170. doi: https://doi.org/10.1016/s0001-2998(96)80021-3
4. Collins J. Molecular, Genetic, And Nutritional Aspects Of Major And Trace Minerals. Elsevier Science; 2016.
5. Kaminsky SM, Levy O, Salvador C, et al. The Na+/I- symporter of the thyroid gland. Soc Gen Physiol Ser. 1993;48:251-262.
6. Dzhikiya EL, Avilov ON, Kiseleva YaYu, et al. Sodium/iodide symporter (NIS): structure, function and role in in thyroid diseases. Vestnik RNTsRR. 2018;18(1):3. (In Russ.)
7. Yegorov AV, Sviridenko NYu, Platonova NM. Thyroid functional features after diagnostic studies with iodine-containing X-ray contrast substances. Problems of Endocrinology. 2005;51(1):50-52. (In Russ.). doi: https://doi.org/10.14341/probl200551150-52
8. Wolff J, Chaikoff I. Plasma inorganic iodide as a homeostatic regulator of thyroid function. Journal of Biological Chemistry. 1948;174(2):555-564. doi: https://doi.org/10.1016/s0021-9258(18)57335-x
9. Akbulut A, Aydinbelge F, Koca G. Radioiodine Treatment for Benign Thyroid Diseases. Radionuclide Treatments. 2017. doi: https://doi.org/10.5772/intechopen.68575
10. Iakovou I, Giannoula E, Exadaktylou P, Papadopoulos N. RAI Therapy for Graves’ Hyperthyroidism. In: Graves’ Disease. IntechOpen; 2021. doi: https://doi.org/10.5772/intechopen.96083
11. Kendall EC. The isolation in crystalline form of the compound containing iodin, which occurs in the thyroid. J Am Med Assoc. 1915;LXIV(25):2042. doi: https://doi.org/10.1001/jama.1915.02570510018005
12. Marine D, Kimball OP. The Journal of Laboratory and Clinical Medicine. October, 1917. Volume III, No. 1, Pages 40-49. The prevention of simple goiter in man. A survey of the incidence and types of thyroid enlargements in the schoolgirls of Akron (Ohio), from the 5th to the 12th grades, inclusivethe plan of prevention proposed. Nutr Rev. 1975;33(9):272-275. doi: https://doi.org/10.1111/j.1753-4887.1975.tb05112.x
13. van Isselt J.W.. Dosage assessment for radioiodine therapy in benign thyroid disorders. Thesis University Utrecht; 2001.
14. Radvanyi P, Villain J. The discovery of radioactivity. Comptes Rendus Physique. 2017;18(9-10):544-550. doi: https://doi.org/10.1016/j.crhy.2017.10.008
15. FERMI E. Radioactivity Induced by Neutron Bombardment. Nature. 1934;133(3368):757-757. doi:10.1038/133757a0
16. Hertz BE, Schuller KE. Saul Hertz, MD (1905-1950): A Pioneer in the Use of Radioactive Iodine. Endocr Pract. 2010;16(4):713-715. doi: https://doi.org/10.4158/EP10065.CO
17. Borges de Souza P, McCabe C. Radioiodine treatment: an historical and future perspective. Endocr Relat Cancer. 2021;28(10):121-124. doi: https://doi.org/10.1530/erc-21-0037
18. Fahey FH, Grant FD, Thrall JH. Saul Hertz, MD, and the birth of radionuclide therapy. EJNMMI Phys. 2017;4(1):15. doi: https://doi.org/10.1186/s40658-017-0182-7
19. Ehrhardt Jr J, Güleç S. A Review of the History of Radioactive Iodine Theranostics: The Origin of Nuclear Ontology. Mol Imaging Radionucl Ther. 2020;29(3):88-97. doi: https://doi.org/10.4274/mirt.galenos.2020.83703
20. Compton K. Letter to Saul Hertz: Hertz Family Archive December 15;1936.
21. Hertz S, Roberts A, Evans R. Radioactive Iodine as an Indicator in the Study of Thyroid Physiology. Experimental Biology and Medicine. 1938;38(4):510-513. doi: https://doi.org/10.3181/00379727-38-9915p
22. Joliot F, Curie I. Artificial Production of a New Kind of Radio-Element. Nature. 1934;133(3354):201-202. doi: https://doi.org/10.1038/133201a0
23. Livingood J, Seaborg G. Radioactive Iodine Isotopes. Physical Review. 1938;53(12):1015-1015. doi: https://doi.org/10.1103/physrev.53.1015.2
24. Hamilton J. The rates of absorption of the radioactive isotopes of sodium, potassium, chlorine, bromine, and iodine in normal human subjects. American Journal of Physiology-Legacy Content. 1938;124(3):667-678. doi: https://doi.org/10.1152/ajplegacy.1938.124.3.667
25. Sawin C, Becker D. Radioiodine and the Treatment of Hyperthyroidism: The Early History *. Thyroid. 1997;7(2):163-176. doi: https://doi.org/10.1089/thy.1997.7.163
26. Proceedings of the thirty-fourth annual meeting of the American society for clinical investigation held in Atlantic city, N. J., May 4, 1942. J Clin Invest. 1942;21(5):619-649. doi: https://doi.org/10.1172/JCI101340
27. Hertz S, Roberts A. Radioactive iodine in the study of thyroid physiology; the use of radioactive iodine therapy in hyperthyroidism. J Am Med Assoc. 1946;131:81-86. doi: https://doi.org/10.1001/jama.1946.02870190005002
28. Chapman EM, Evans RD. The treatment of hyperthyroidism with radioactive iodine. J Am Med Assoc. 1946;131:86-91. doi: https://doi.org/10.1001/jama.1946.02870190010003
29. Hamilton J. The Use of Radioactive Tracers in Biology and Medicine. Radiology. 1942;39(5):541-572. doi: https://doi.org/10.1148/39.5.541
30. Keston A, Ball R, Frantz V, Palmer W. Storage of radioactive iodine in a metastasis from thyroid carcinoma. Science (1979). 1942;95(2466):362-363. doi: https://doi.org/10.1126/science.95.2466.362
31. Frantz V, Ball R, Keston A, Palmer W. Thyroid carcinoma with metastases. Ann Surg. 1944;119(5):668-689. doi: https://doi.org/10.1097/00000658-194405000-00003
32. Seidlin S, Oshry E, Yalow A. Spontaneous and experimentally induced uptake of radioactive iodine in metastases from thyroid carcinoma: a preliminary report*†. The Journal of Clinical Endocrinology & Metabolism. 1948;8(6):423-432. doi: https://doi.org/10.1210/jcem-8-6-423
33. Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy; effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc. 1946;132(14):838-847. doi: https://doi.org/10.1001/jama.1946.02870490016004
34. Smithers D. Some Varied Applications of Radioactive Isotopes to the Localisation and Treatment of Tumours. Acta radiol. 1951;35(1):49-61. doi: https://doi.org/10.3109/00016925109136645
35. Hertz S. Use of radioactive iodine in the diagnosis, study and treatment of diseases of the thyroid. Progress in Clinical Endocrinology 1950;65-78
36. Dobyns B, Vickery A, Maloof F, Chapman E. Functional and histologic effects of therapeutic doses of radioactive iodine on the thyroid of man*. The Journal of Clinical Endocrinology & Metabolism. 1953;13(5):548-567. doi: https://doi.org/10.1210/jcem-13-5-548
37. Pouget J, Lozza C, Deshayes E, et al. Introduction to Radiobiology of Targeted Radionuclide Therapy. Front Med (Lausanne). 2015;2. doi: https://doi.org/10.3389/fmed.2015.00012
38. Bahn R. Graves’ Disease. New York: Springer; 2015. 344 p.
39. Semenov DYu, Boriskova ME, Farafonova UV, et al. Prognostic value of Sodium-Iodide Symporter (NIS) in differentiated thyroid cancer. Clinical and experimental thyroidology. 2015;11(1):50-58. (In Russ.). doi: https://doi.org/10.14341/ket2015150-58
40. Spitzweg C, Bible K, Hofbauer L, Morris J. Advanced radioiodine-refractory differentiated thyroid cancer: the sodium iodide symporter and other emerging therapeutic targets. The Lancet Diabetes & Endocrinology. 2014;2(10):830-842. doi: https://doi.org/10.1016/s2213-8587(14)70051-8
41. Fletcher A, Read M, Thornton C, et al. Targeting Novel Sodium Iodide Symporter Interactors ADP-Ribosylation Factor 4 and Valosin-Containing Protein Enhances Radioiodine Uptake. Cancer Res. 2019;80(1):102-115. doi: https://doi.org/10.1158/0008-5472.can-19-1957
42. Schlumberger M, Brose M, Elisei R et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. The Lancet Diabetes & Endocrinology. 2014;2(5):356-358. doi: https://doi.org/10.1016/s2213-8587(13)70215-8
43. Mufazalov F, Sharipova N. Current status of differetiated radioactive iodine-resistant thyroid cancer: case report of successful long-term treatment with sorafenib. Malignant tumours. 2015;(3):24. doi: https://doi.org/10.18027/2224-5057-2015-3-24-33
44. Marinelli L. Dosage determination in the use of radioactive isotopes. Journal of Clinical Investigation. 1949;28(6 Pt1):1271-1280. doi: https://doi.org/10.1172/jci102194
Supplementary files
|
1. Рис. 1. Схема распада 131I | |
Subject | ||
Type | рисунок | |
View
(48KB)
|
Indexing metadata ▾ |
Review
For citations:
Sheremeta M.S., Trukhin A.A., Korchagina M.O. The use of radioactive substances in medicine — history and development prospects. Problems of Endocrinology. 2021;67(6):59-67. (In Russ.) https://doi.org/10.14341/probl12824

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).