The dual role of the menopausal hormonal therapy as the enhancer of pleiotropic telomere rejuvenation and the silencer of cellular aging (literature review)
https://doi.org/10.14341/probl12895
Abstract
Present worldwide healthcare researches prove that female patients are more sensitive to the population aging. Menopause or climacteria (climax) — is not as ageing itself, but a physiological unstoppable process. The main task for a physician is to improve life quality for female despite of ageing problems. Menopausal hormone therapy (MHT) due to the estrogen component has an anti-inflammatory, antioxidant effect and promotes the expression of telomerase, which together changes the homeostasis and integrity of telomeres. The use of MHT for five years or more can not only significantly change the quality of life, but also increase its duration. Literature search was carried out in national (eLibrary, CyberLeninka.ru) and international (PubMed, Cochrane Library) databases in Russian and English. The priority was free access to the full text of articles. The choice of sources was prioritized for the period from 2019 to 2021. However, taking into account the insufficient knowledge of the chosen topic, the choice of sources dates back to 1989.
About the Authors
O. R. GrigoryanRussian Federation
Olga R. Grigoryan, MD, PhD
11 Dm. Ulyanova street, 117036 Moscow
T. M. Frolova
Russian Federation
Tatyana M. Frolova, MD, resident
11 Dm. Ulyanova street, 117036 Moscow
R. K. Mikheev
Russian Federation
Robert K. Mikheev, MD, resident
11 Dm. Ulyanova street, 117036 Moscow
E. V. Sheremetyeva
Russian Federation
Ekaterina V. Sheremetyeva, MD, PhD
11 Dm. Ulyanova street, 117036 Moscow
Yu. S. Absatarova
Russian Federation
Yuliya S. Absatarova, MD, PhD
11 Dm. Ulyanova street, 117036 Moscow
Z. A. Uzhegova
Russian Federation
Zhanna A. Uzhegova, MD, PhD
11 Dm. Ulyanova street, 117036 Moscow
E. N. Andreeva
Russian Federation
Elena N. Andreeva, MD, PhD
11 Dm. Ulyanova street, 117036 Moscow
N. G. Mokrysheva
Russian Federation
Natalia G. Mokrysheva, MD, PhD
11 Dm. Ulyanova street, 117036 Moscow
References
1. Available from: https://population.un.org/wpp/Publications/Files/WPP2
2. Freedman VA, Wolf DA, Spillman BC. Disability-Free Life Expectancy Over 30 Years: A Growing Female Disadvantage in the US Population. Am J Public Health. 2016;106(6):1079-1085. doi: https://doi.org/10.2105/AJPH.2016.303089
3. Tkacheva ON, Dobrokhotova YuE, Dudinskaya EN, et al. Metodicheskie rekomendatsii “Profilaktika prezhdevremennogo stareniya u zhenshchin”. Moscow; 2018. (In Russ.).
4. Jin K. Modern Biological Theories of Aging. Aging Dis. 2010;1(2):72-74.
5. Meyne J, Ratliff RL, Moyzis RK. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci. 1989;86(18):7049-7053. doi: https://doi.org/10.1073/pnas.86.18.7049
6. Aubert G, Baerlocher GM, Vulto I, et al. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet. 2012;8(5):e1002696. doi: https://doi.org/10.1371/journal.pgen.1002696
7. Alter BP, Baerlocher GM, Savage SA, et al. Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood. 2007;110(5):1439-1447. doi: https://doi.org/10.1182/blood-2007-02-075598
8. Zhang J-M, Zou L. Alternative lengthening of telomeres: from molecular mechanisms to therapeutic outlooks. Cell Biosci. 2020;10(1):30. doi: https://doi.org/10.1186/s13578-020-00391-6
9. Dogan F, Forsyth NR. Telomerase Regulation: A Role for Epigenetics. Cancers (Basel). 2021;13(6):1213. doi: https://doi.org/10.3390/cancers13061213
10. Rosen J, Jakobs P, Ale-Agha N, et al. Non-canonical functions of Telomerase Reverse Transcriptase – Impact on redox homeostasis. Redox Biol. 2020;34:101543. doi: https://doi.org/10.1016/j.redox.2020.101543
11. Shamsi MB, Firoz AS, Imam SN, et al. Epigenetics of human diseases and scope in future therapeutics. J Taibah Univ Med Sci. 2017;12(3):205-211. doi: https://doi.org/10.1016/j.jtumed.2017.04.003
12. Denhardt DT. Effect of stress on human biology: Epigenetics, adaptation, inheritance, and social significance. J Cell Physiol. 2018;233(3):1975-1984. doi: https://doi.org/10.1002/jcp.25837
13. Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. 2019;177:37-45. doi: https://doi.org/10.1016/j.mad.2018.03.013
14. Dudinskaya EN, Tkacheva ON, Brailova NV, et al. Telomere biology and metabolic disorders: the role of insulin resistance and type 2 diabetes. Problems of Endocrinology. 2020;66(4):35-44. (In Russ.). doi: https://doi.org/10.14341/probl12510
15. Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, et al. Telomere Length and Oxidative Stress and Its Relation with Metabolic Syndrome Components in the Aging. Biology (Basel). 2021;10(4):253. doi: https://doi.org/10.3390/biology10040253
16. Bonda DJ, Wang X, Perry G, et al. Oxidative stress in Alzheimer disease: A possibility for prevention. Neuropharmacology. 2010;59(4-5):290-294. doi: https://doi.org/10.1016/j.neuropharm.2010.04.005
17. Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. 2019;177(4-5):37-45. doi: https://doi.org/10.1016/j.mad.2018.03.013
18. Zheng Q, Huang J, Wang G. Mitochondria, Telomeres and Telomerase Subunits. Front Cell Dev Biol. 2019;7(4-5):37-45. doi: https://doi.org/10.3389/fcell.2019.00274
19. Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, et al. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev. 2020;41(3). doi: https://doi.org/10.1210/endrev/bnaa005
20. Lex K, Maia Gil M, Lopes-Bastos B, et al. Telomere shortening produces an inflammatory environment that increases tumor incidence in zebrafish. Proc Natl Acad Sci. 2020;117(26):15066-15074. doi: https://doi.org/10.1073/pnas.1920049117
21. Vecoli C, Borghini A, Pulignani S, et al. Independent and Combined Effects of Telomere Shortening and mtDNA4977 Deletion on Longterm Outcomes of Patients with Coronary Artery Disease. Int J Mol Sci. 2019;20(21):5508. doi: https://doi.org/10.3390/ijms20215508
22. Dalgård C, Benetos A, Verhulst S, et al. Leukocyte telomere length dynamics in women and men: menopause vs age effects. Int J Epidemiol. 2015;44(5):1688-1695. doi: https://doi.org/10.1093/ije/dyv165
23. Gray KE, Schiff MA, Fitzpatrick AL, et al. Leukocyte Telomere Length and Age at Menopause. Epidemiology. 2014;25(1):139-146. doi: https://doi.org/10.1097/EDE.0000000000000017
24. Shenassa ED, Rossen LM. Telomere length and age-atmenopause in the US. Maturitas. 2015;82(2):215-221. doi: https://doi.org/10.1016/j.maturitas.2015.07.009
25. Fagan E, Sun F, Bae H, et al. Telomere length is longer in women with late maternal age. Menopause. 2017;24(5):497-501. doi: https://doi.org/10.1097/GME.0000000000000795
26. Latour CD, O’Connell K, Romano ME, et al. Maternal age at last birth and leukocyte telomere length in a nationally representative population of perimenopausal and postmenopausal women. Menopause. 2020;27(11):1242-1250. doi: https://doi.org/10.1097/GME.0000000000001669
27. Valdes AM, Richards JB, Gardner JP, et al. Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis. Osteoporos Int. 2007;18(9):1203-1210. doi: https://doi.org/10.1007/s00198-007-0357-5
28. Kim J-H, Ko J-H, Lee D, et al. Habitual physical exercise has beneficial effects on telomere length in postmenopausal women. Menopause. 2012;19(10):1109-1115. doi: https://doi.org/10.1097/gme.0b013e3182503e97
29. Canudas S, Becerra-Tomás N, Hernández-Alonso P, et al. Mediterranean Diet and Telomere Length: A Systematic Review and Meta-Analysis. Adv Nutr. 2020;11(6):1544-1554. doi: https://doi.org/10.1093/advances/nmaa079
30. Pines A. Telomere length and telomerase activity in the context of menopause. Climacteric. 2013;16(6):629-631. doi: https://doi.org/10.3109/13697137.2013.812603
31. Boccardi V, Esposito A, Rizzo MR, et al. Mediterranean Diet, Telomere Maintenance and Health Status among Elderly. Vinciguerra M, ed. PLoS One. 2013;8(4):e62781. doi: https://doi.org/10.1371/journal.pone.0062781
32. Sayban S, Mirfakhraie R, Omrani MD, et al. Idiopathic Premature Ovarian Failure and its association to the abnormal longitudinal changes of telomere length in a population of Iranian Infertile Women: A pilot study. Meta Gene. 2018;18:58-61. doi: https://doi.org/10.1016/j.mgene.2018.07.005
33.
34. Lin J, Kroenke CH, Epel E, et al. Greater endogenous estrogen exposure is associated with longer telomeres in postmenopausal women at risk for cognitive decline. Brain Res. 2011;1379:224-231. doi: https://doi.org/10.1016/j.brainres.2010.10.033
35. Lee D-C, Im J-A, Kim J-H, et al. Effect of Long-Term Hormone Therapy on Telomere Length in Postmenopausal Women. Yonsei Med J. 2005;46(4):471. doi: https://doi.org/10.3349/ymj.2005.46.4.471 35. Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28(5):521-574. doi: https://doi.org/10.1210/er.2007-0001 36. McEwen BS. Clinical review 108: The molecular and neuroanatomical basis for estrogen effects in the central nervous system. J Clin Endocrinol Metab. 1999;84(6):1790-1797. doi: https://doi.org/10.1210/jcem.84.6.5761
36. Yao J, Irwin R, Chen S, et al. Ovarian hormone loss induces bioenergetic deficits and mitochondrial β-amyloid. Neurobiol Aging. 2012;33(8):1507- 1521. doi: https://doi.org/10.1016/j.neurobiolaging.2011.03.001 38. Rosen J, Jakobs P, Ale-Agha N, et al. Non-canonical functions of Telomerase Reverse Transcriptase – Impact on redox homeostasis. Redox Biol. 2020;34(8):101543. doi: https://doi.org/10.1016/j.redox.2020.101543
37. Fredette NC, Meyer MR, Prossnitz ER. Role of GPER in estrogendependent nitric oxide formation and vasodilation. J Steroid Biochem Mol Biol. 2018;176(8):65-72. doi: https://doi.org/10.1016/j.jsbmb.2017.05.006
38. Brand JS, van der Schouw YT, Onland-Moret NC, et al. Age at Menopause, Reproductive Life Span, and Type 2 Diabetes Risk. Diabetes Care. 2013;36(4):1012-1019. doi: https://doi.org/10.2337/dc12-1020
39. Kanaya AM, Herrington D, Vittinghoff E, et al. Glycemic Effects of Postmenopausal Hormone Therapy: The Heart and Estrogen/ progestin Replacement Study: A Randomized, DoubleBlind, Placebo-Controlled Trial. Ann Intern Med. 2003;138(1):1. doi: https://doi.org/10.7326/0003-4819-138-1-200301070-00005
40. Whiteman M. Smoking, body mass, and hot flashes in midlife women. Obstet Gynecol. 2003;101(2):264-272. doi: https://doi.org/10.1016/S0029-7844(02)02593-0
41. Papadakis GE, Hans D, Rodriguez EG, et al. Menopausal Hormone Therapy Is Associated With Reduced Total and Visceral Adiposity: The OsteoLaus Cohort. J Clin Endocrinol Metab. 2018;103(5):1948-1957. doi: https://doi.org/10.1210/jc.2017-02449
42. Jensen L, Vestergaard P, Hermann A, et al. Hormone Replacement Therapy Dissociates Fat Mass and Bone Mass, and Tends to Reduce Weight Gain in Early Postmenopausal Women: A Randomized Controlled 5-Year Clinical Trial of the Danish Osteoporosis Prevention Study. J Bone Miner Res. 2003;18(2):333-342. doi: https://doi.org/10.1359/jbmr.2003.18.2.333
43. Kritz-Silverstein D, Barrett-Connor E. Long-term postmenopausal hormone use, obesity, and fat distribution in older women. JAMA. 1996 Jan 3;275(1):46-9. doi:10.1001/jama.1996.03530250050026
44. Binder EF, Williams DB, Schechtman KB, et al. Effects of Hormone Replacement Therapy on Serum Lipids in Elderly Women. Ann Intern Med. 2001;134(9_Part_1):754. doi: https://doi.org/10.7326/0003- 4819-134-9_Part_1-200105010-00012
45. Chen Y-F, Zhou K-W, Yang G, Chen C. Association between lipoproteins and telomere length in US adults: data from the NHANES 1999–2002. Lipids Health Dis. 2019;18(1):80. doi: https://doi.org/10.1186/s12944-019-1030-7
46. Maki PM, Kornstein SG, Joffe H, et al. Guidelines for the evaluation and treatment of perimenopausal depression: summary and recommendations. Menopause. 2018;25(10):1069-1085. doi: https://doi.org/10.1097/GME.0000000000001174
47. Soares CN, Poitras JR, Prouty J, et al. Efficacy of Citalopram as a Monotherapy or as an Adjunctive Treatment to Estrogen Therapy for Perimenopausal and Postmenopausal Women With Depression and Vasomotor Symptoms. J Clin Psychiatry. 2003;64(4):473-479. doi: https://doi.org/10.4088/JCP.v64n0419
48. Freeman EW, Sammel MD, Lin H, Nelson DB. Associations of hormones and menopausal status with depressed mood in women with no history of depression. Arch Gen Psychiatry. 2006;63(4):375-382. doi: https://doi.org/10.1001/archpsyc.63.4.375
49. Cohen LS, Soares CN, Vitonis AF, et al. Risk for new onset of depression during the menopausal transition: the Harvard study of moods and cycles. Arch Gen Psychiatry. 2006;63(4):385-390. doi: https://doi.org/10.1001/archpsyc.63.4.385
50. Ridout KK, Ridout SJ, Price LH, et al. Depression and telomere length: A meta-analysis. J Affect Disord. 2016;191:237-247. doi: https://doi.org/10.1016/j.jad.2015.11.052
51. Penninx BWJH. Depression and cardiovascular disease: Epidemiological evidence on their linking mechanisms. Neurosci Biobehav Rev. 2017;74(4):277-286. doi: https://doi.org/10.1016/j.neubiorev.2016.07.003
52. Pousa PA, Souza RM, Melo PHM, et al. Telomere Shortening and Psychiatric Disorders: A Systematic Review. Cells. 2021;10(6):1423. doi: https://doi.org/10.3390/cells10061423
Supplementary files
Review
For citations:
Grigoryan O.R., Frolova T.M., Mikheev R.K., Sheremetyeva E.V., Absatarova Yu.S., Uzhegova Z.A., Andreeva E.N., Mokrysheva N.G. The dual role of the menopausal hormonal therapy as the enhancer of pleiotropic telomere rejuvenation and the silencer of cellular aging (literature review). Problems of Endocrinology. 2022;68(3):105-112. (In Russ.) https://doi.org/10.14341/probl12895

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).