Preview

Problems of Endocrinology

Advanced search

Time-restricted eating as a novel strategy for treatment of obesity and it’s comorbid conditions

https://doi.org/10.14341/probl13078

Abstract

The article provides a review of the current literature about time-restricted eating (TRE) as a new tool for the treatment of obesity and comorbid conditions. The search for new nutritional strategies in obesity, one of which is TRE, is due to the weak adherence of patients to hypocaloric diets in the long term, as well as the available data on the importance of ­desynchronization of food intake with natural circadian rhythms in the development and progression of obesity and cardio-­metabolic complications. The article describes the main mechanisms that regulate the circadian rhythms of food intake and nutrient absorption, substantiates the importance of adhering to a physiological diet for maintaining metabolic health. The main part of the review is devoted to reviewing the currently available researches on the effectiveness of various strategies of intermittent energy restriction for weight loss and the correction of metabolic parameters. Potential mechanisms of  the ­effect of TRE on health are discussed, including those mediated by an unintentional decrease in caloric intake and changes in eating behavior, and differences in the effectiveness of early and late TRE. The article contains a detailed discussion of the potential problems and contradictions associated with the use of time-restricted eating in clinical practice, namely: the limitations and inconsistencies of the available clinical trials, the lack of data on long-term efficacy and safety, social and psychological limitations that impede the widespread use of TRE.

About the Authors

M. A. Berkovskaya
I.M. Sechenov First Moscow State Medical University
Russian Federation

Marina A. Berkovskaya - MD, PhD.

1 Pogodinskaya street, 119435 Moscow.

SPIN-код: 4251-7117


Competing Interests:

None



O. Y. Gurova
I.M. Sechenov First Moscow State Medical University
Russian Federation

Olesya Yu. Gurova - MD, PhD.

1 Pogodinskaya street, 119435 Moscow.

SPIN-код: 1257-5499


Competing Interests:

None



I. A. Khaykina
I.M. Sechenov First Moscow State Medical University
Russian Federation

Irina A. Khaykina - MD.

1 Pogodinskaya street, 119435 Moscow.


Competing Interests:

None



V. V. Fadeev
I.M. Sechenov First Moscow State Medical University
Russian Federation

Valentin V. Fadeev - MD, ScD, professor, corresponding member of the RAS.

1 Pogodinskaya street, 119435 Moscow.

SPIN-код: 6825-8417


Competing Interests:

None



References

1. Vsemirnaya Organizatsiya Zdravookhraneniya. Tsentr SMI. Informatsionnyi byulleten’ «Ozhirenie i izbytochnyi ves». Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 26.07.2022. (In Russ.).

2. Yumuk V, Tsigos C, Fried M, et al. European Guidelines for Obesity Management in Adults [published correction appears in Obes Facts. 2016;9(1):64]. Obes Facts. 2015;8(6):402-424. doi: https://doi.org/10.1159/000442721

3. Heymsfield SB, Harp JB, Reitman ML, et al. Why do obese patients not lose more weight when treated with low-calorie diets? A mechanistic perspective. Am J Clin Nutr. 2007;85(2):346-354. doi: https://doi.org/10.1093/ajcn/85.2.346

4. Pérez-Martínez P, Mikhailidis DP, Athyros VG, et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation. Nutr Rev. 2017;75(5):307-326. doi: https://doi.org/10.1093/nutrit/nux014

5. Suliga E, Kozieł D, Cieśla E, et al. Dietary Patterns in Relation to Metabolic Syndrome among Adults in Poland: A Cross-Sectional Study. Nutrients. 2017;9(12):1366. Published 2017 Dec 17. doi: https://doi.org/10.3390/nu9121366

6. Kant AK, Graubard BI. 40-year trends in meal and snack eating behaviors of American adults. J Acad Nutr Diet. 2015;115(1):50-63. doi: https://doi.org/10.1016/j.jand.2014.06.354

7. Pot GK, Almoosawi S, Stephen AM. Meal irregularity and cardiometabolic consequences: results from observational and intervention studies. Proc Nutr Soc. 2016;75(4):475-486. doi: https://doi.org/10.1017/S0029665116000239

8. Ha K, Song Y. Associations of Meal Timing and Frequency with Obesity and Metabolic Syndrome among Korean Adults. Nutrients. 2019;11(10):2437. Published 2019 Oct 13. doi: https://doi.org/10.3390/nu11102437

9. Wilkinson MJ, Manoogian ENC, Zadourian A, et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020;31(1):92-104.e5. doi: https://doi.org/10.1016/j.cmet.2019.11.004

10. Xie Y, Tang Q, Chen G, et al. New Insights Into the Circadian Rhythm and Its Related Diseases. Front Physiol. 2019;10:682. Published 2019 Jun 25. doi: https://doi.org/10.3389/fphys.2019.00682

11. Mason IC, Qian J, Adler GK, Scheer FAJL. Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes. Diabetologia. 2020;63(3):462-472. doi: https://doi.org/:10.1007/s00125-019-05059-6

12. Stenvers DJ, Scheer FAJL, Schrauwen P, la Fleur SE, Kalsbeek A. Circadian clocks and insulin resistance. Nat Rev Endocrinol. 2019;15(2):75-89. doi: https://doi.org/10.1038/s41574-018-0122-1

13. Chellappa SL, Vujovic N, Williams JS, Scheer FAJL. Impact of Circadian Disruption on Cardiovascular Function and Disease. Trends Endocrinol Metab. 2019;30(10):767-779. doi: https://doi.org/10.1016/j.tem.2019.07.008

14. Chow LS, Manoogian ENC, Alvear A, et al. Time-Restricted Eating Effects on Body Composition and Metabolic Measures in Humans who are Overweight: A Feasibility Study. Obesity (Silver Spring). 2020;28(5):860-869. doi: https://doi.org/:10.1002/oby.22756

15. Lopez-Minguez J, Gómez-Abellán P, Garaulet M. Circadian rhythms, food timing and obesity. Proc Nutr Soc. 2016;75(4):501-511. doi: https://doi.org/10.1017/S0029665116000628

16. de Cabo R, Mattson MP. Effects of Intermittent Fasting on Health, Aging, and Disease [published correction appears in N Engl J Med. 2020 Jan 16;382(3):298] [published correction appears in N Engl J Med. 2020 Mar 5;382(10):978]. N Engl J Med. 2019;381(26):2541-2551. doi: https://doi.org/10.1056/NEJMra1905136

17. Dashti HS, Scheer FAJL, Saxena R, Garaulet M. Timing of Food Intake: Identifying Contributing Factors to Design Effective Interventions. Adv Nutr. 2019;10(4):606-620. doi: https://doi.org/10.1093/advances/nmy131

18. Dong TA, Sandesara PB, Dhindsa DS, et al. Intermittent Fasting: A Heart Healthy Dietary Pattern? Am J Med. 2020;133(8):901-907. doi: https://doi.org/:10.1016/j.amjmed.2020.03.030

19. Regmi P, Heilbronn LK. Time-Restricted Eating: Benefits, Mechanisms, and Challenges in Translation. iScience. 2020;23(6):101161. doi: https://doi.org/10.1016/j.isci.2020.101161

20. Charlot A, Hutt F, Sabatier E, Zoll J. Beneficial Effects of Early Time-Restricted Feeding on Metabolic Diseases: Importance of Aligning Food Habits with the Circadian Clock. Nutrients. 2021;13(5):1405. doi: https://doi.org/:10.3390/nu13051405

21. Davidson AJ, Poole AS, Yamazaki S, Menaker M. Is the food-entrainable circadian oscillator in the digestive system? Genes Brain Behav. 2003;2(1):32-39. doi: https://doi.org/10.1034/j.1601-183x.2003.00005.x

22. Shimizu H, Hanzawa F, Kim D, et al. Delayed first active-phase meal, a breakfast-skipping model, led to increased body weight and shifted the circadian oscillation of the hepatic clock and lipid metabolism-related genes in rats fed a high-fat diet. PLoS One. 2018;13(10):e0206669. doi: https://doi.org/10.1371/journal.pone.0206669

23. Hamaguchi Y, Tahara Y, Hitosugi M, Shibata S. Impairment of Circadian Rhythms in Peripheral Clocks by Constant Light Is Partially Reversed by Scheduled Feeding or Exercise. J Biol Rhythms. 2015;30(6):533-542. doi: https://doi.org/10.1177/0748730415609727

24. Kolbe I, Leinweber B, Brandenburger M, Oster H. Circadian clock network desynchrony promotes weight gain and alters glucose homeostasis in mice. Mol Metab. 2019;30:140-151. doi: https://doi.org/10.1016/j.molmet.2019.09.012

25. Wang H, van Spyk E, Liu Q, et al. Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage. Cell Rep. 2017;20(5):1061-1072. doi: https://doi.org/10.1016/j.celrep.2017.07.022

26. Gnocchi D, Bruscalupi G. Circadian Rhythms and Hormonal Homeostasis: Pathophysiological Implications. Biology (Basel). 2017;6(1):10. doi: https://doi.org/10.3390/biology6010010

27. Yu H, Xia F, Lam KS, et al. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. Clin Chem. 2011;57(5):691-700. doi: https://doi.org/:10.1373/clinchem.2010.155184

28. Fisher FM, Maratos-Flier E. Understanding the Physiology of FGF21. Annu Rev Physiol. 2016;78:223-241. doi: https://doi.org/10.1146/annurev-physiol-021115-105339

29. Gavrila A, Peng CK, Chan JL, et al. Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab. 2003;88(6):2838-2843. doi: https://doi.org/10.1210/jc.2002-021721

30. Gamble KL, Berry R, Frank SJ, Young ME. Circadian clock control of endocrine factors. Nat Rev Endocrinol. 2014;10(8):466-475. doi: https://doi.org/10.1038/nrendo.2014.78

31. Barnea M, Chapnik N, Genzer Y, Froy O. The circadian clock machinery controls adiponectin expression. Mol Cell Endocrinol. 2015;399:284-287. doi: https://doi.org/10.1016/j.mce.2014.10.018

32. Yanai H, Yoshida H. Beneficial Effects of Adiponectin on Glucose and Lipid Metabolism and Atherosclerotic Progression: Mechanisms and Perspectives. Int J Mol Sci. 2019;20(5):1190. doi: https://doi.org/10.3390/ijms20051190

33. Natalucci G, Riedl S, Gleiss A, et al. Spontaneous 24-h ghrelin secretion pattern in fasting subjects: maintenance of a meal-related pattern. Eur J Endocrinol. 2005;152(6):845-850. doi: https://doi.org/10.1530/eje.1.01919

34. Chan JL, Bullen J, Lee JH, et al. Ghrelin levels are not regulated by recombinant leptin administration and/or three days of fasting in healthy subjects. J Clin Endocrinol Metab. 2004;89(1):335-343. doi: https://doi.org/10.1210/jc.2003-031412

35. Moran-Ramos S, Baez-Ruiz A, Buijs RM, Escobar C. When to eat? The influence of circadian rhythms on metabolic health: are animal studies providing the evidence? Nutr Res Rev. 2016;29(2):180-193. doi: https://doi.org/10.1017/S095442241600010X

36. Manoogian ENC, Panda S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev. 2017;39:59-67. doi: https://doi.org/10.1016/j.arr.2016.12.006

37. Yamauchi T, Kadowaki T. Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int J Obes (Lond). 2008;32 Suppl 7:S13-S18. doi: https://doi.org/10.1038/ijo.2008.233

38. D’souza AM, Neumann UH, Glavas MM, Kieffer TJ. The glucoregulatory actions of leptin. Mol Metab. 2017;6(9):1052-1065. doi: https://doi.org/10.1016/j.molmet.2017.04.011

39. Kolbe I, Brehm N, Oster H. Interplay of central and peripheral circadian clocks in energy metabolism regulation. J Neuroendocrinol. 2019;31(5):e12659. doi: https://doi.org/10.1111/jne.12659

40. Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74(2):246-260. doi: https://doi.org/10.1016/j.neuron.2012.04.006

41. Njike VY, Smith TM, Shuval O, et al. Snack Food, Satiety, and Weight. Adv Nutr. 2016;7(5):866-878. Published 2016 Sep 15. doi: https://doi.org/10.3945/an.115.009340

42. Yoshida J, Eguchi E, Nagaoka K, Ito T, Ogino K. Association of night eating habits with metabolic syndrome and its components: a longitudinal study. BMC Public Health. 2018;18(1):1366. doi: https://doi.org/10.1186/s12889-018-6262-3

43. Vera B, Dashti HS, Gómez-Abellán P, et al. Modifiable lifestyle behaviors, but not a genetic risk score, associate with metabolic syndrome in evening chronotypes. Sci Rep. 2018;8(1):945. doi: https://doi.org/10.1038/s41598-017-18268-z

44. Roßbach S, Diederichs T, Nöthlings U, et al. Relevance of chronotype for eating patterns in adolescents. Chronobiol Int. 2018;35(3):336-347. doi: https://doi.org/10.1080/07420528.2017.1406493

45. St-Onge MP, Ard J, Baskin ML, et al. Meal Timing and Frequency: Implications for Cardiovascular Disease Prevention: A Scientific Statement From the American Heart Association. Circulation. 2017;135(9):e96-e121. doi: https://doi.org/10.1161/CIR.0000000000000476

46. Reutrakul S, Hood MM, Crowley SJ, et al. The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol Int. 2014;31(1):64-71. doi: https://doi.org/:10.3109/07420528.2013.821614

47. Odegaard AO, Jacobs DR Jr, Steffen LM, et al. Breakfast frequency and development of metabolic risk. Diabetes Care. 2013;36(10):3100-3106. doi: https://doi.org/:10.2337/dc13-0316

48. Witbracht M, Keim NL, Forester S, et al. Female breakfast skippers display a disrupted cortisol rhythm and elevated blood pressure. Physiol Behav. 2015;140:215-221. doi: https://doi.org/10.1016/j.physbeh.2014.12.044

49. Sharma K, Shah K, Brahmbhatt P, Kandre Y. Skipping breakfast and the risk of coronary artery disease. QJM. 2018;111(10):715-719. doi: https://doi.org/10.1093/qjmed/hcy162

50. Rynders CA, Thomas EA, Zaman A, et al. Effectiveness of Intermittent Fasting and Time-Restricted Feeding Compared to Continuous Energy Restriction for Weight Loss. Nutrients. 2019;11(10):2442. doi: https://doi.org/10.3390/nu11102442

51. Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017;39:46-58. doi: https://doi.org/10.1016/j.arr.2016.10.005

52. Anton SD, Moehl K, Donahoo WT, et al. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver Spring). 2018;26(2):254-268. doi: https://doi.org/10.1002/oby.22065

53. Moon S, Kang J, Kim SH, et al. Beneficial Effects of Time-Restricted Eating on Metabolic Diseases: A Systemic Review and Meta-Analysis. Nutrients. 2020;12(5):1267. doi: https://doi.org/10.3390/nu12051267

54. Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014;20(6):991-1005. doi: https://doi.org/10.1016/j.cmet.2014.11.001

55. Delahaye LB, Bloomer RJ, Butawan MB, et al. Time-restricted feeding of a high-fat diet in male C57BL/6 mice reduces adiposity but does not protect against increased systemic inflammation. Appl Physiol Nutr Metab. 2018;43(10):1033-1042. doi: https://doi.org/:10.1139/apnm-2017-0706

56. Gill S, Le HD, Melkani GC, Panda S. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science. 2015;347(6227):1265-1269. doi: https://doi.org/:10.1126/science.1256682

57. Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848-860. doi: https://doi.org/:10.1016/j.cmet.2012.04.019

58. Olsen MK, Choi MH, Kulseng B, et al. Time-restricted feeding on weekdays restricts weight gain: A study using rat models of high-fat diet-induced obesity. Physiol Behav. 2017;173:298-304. doi: https://doi.org/10.1016/j.physbeh.2017.02.032

59. Sundaram S, Yan L. Time-restricted feeding reduces adiposity in mice fed a high-fat diet. Nutr Res. 2016;36(6):603-611. doi: https://doi.org/10.1016/j.nutres.2016.02.005

60. Villanueva JE, Livelo C, Trujillo AS, et al. Time-restricted feeding restores muscle function in Drosophila models of obesity and circadian-rhythm disruption [published correction appears in Nat Commun. 2020 May 15;11(1):2521]. Nat Commun. 2019;10(1):2700. doi: https://doi.org/oi:10.1038/s41467-019-10563-9

61. Woodie LN, Luo Y, Wayne MJ, et al. Restricted feeding for 9h in the active period partially abrogates the detrimental metabolic effects of a Western diet with liquid sugar consumption in mice. Metabolism. 2018;82:1-13. doi: https://doi.org/i:10.1016/j.metabol.2017.12.004

62. Sherman H, Frumin I, Gutman R, et al. Long-term restricted feeding alters circadian expression and reduces the level of inflammatory and disease markers. J Cell Mol Med. 2011;15(12):2745-2759. doi: https://doi.org/:10.1111/j.1582-4934.2010.01160.x

63. Tsai JY, Villegas-Montoya C, Boland BB, et al. Influence of dark phase restricted high fat feeding on myocardial adaptation in mice. J Mol Cell Cardiol. 2013;55:147-155. doi: https://doi.org/10.1016/j.yjmcc.2012.09.010

64. Kentish SJ, Hatzinikolas G, Li H, et al. Time-Restricted Feeding Prevents Ablation of Diurnal Rhythms in Gastric Vagal Afferent Mechanosensitivity Observed in High-Fat Diet-Induced Obese Mice. J Neurosci. 2018;38(22):5088-5095. doi: https://doi.org/10.1523/JNEUROSCI.0052-18.2018

65. Hu D, Mao Y, Xu G, et al. Time-restricted feeding causes irreversible metabolic disorders and gut microbiota shift in pediatric mice. Pediatr Res. 2019;85(4):518-526. doi: https://doi.org/10.1038/s41390-018-0156-z

66. Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014;20(6):1006-1017. doi: https://doi.org/10.1016/j.cmet.2014.11.008

67. Chaix A, Lin T, Le HD, et al. Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock. Cell Metab. 2019;29(2):303-319.e4. doi: https://doi.org/10.1016/j.cmet.2018.08.004

68. Duncan MJ, Smith JT, Narbaiza J, et al. Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet. Physiol Behav. 2016;167:1-9. doi: https://doi.org/10.1016/j.physbeh.2016.08.027

69. Sutton EF, Beyl R, Early KS, et al. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018;27(6):1212-1221.e3. doi: https://doi.org/:10.1016/j.cmet.2018.04.010

70. Anton SD, Lee SA, Donahoo WT, et al. The Effects of Time Restricted Feeding on Overweight, Older Adults: A Pilot Study. Nutrients. 2019;11(7):1500. doi: https://doi.org/10.3390/nu11071500

71. Gabel K, Hoddy KK, Haggerty N, et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr Healthy Aging. 2018;4(4):345-353. doi: https://doi.org/10.3233/NHA-170036

72. LeCheminant JD, Christenson E, Bailey BW, Tucker LA. Restricting night-time eating reduces daily energy intake in healthy young men: a short-term cross-over study. Br J Nutr. 2013;110(11):2108-2113. doi: https://doi.org/10.1017/S0007114513001359

73. Moro T, Tinsley G, Bianco A, et al. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med. 2016;14(1):290. doi: https://doi.org/10.1186/s12967-016-1044-0

74. Stote KS, Baer DJ, Spears K, et al. A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am J Clin Nutr. 2007;85(4):981-988. doi: https://doi.org/:10.1093/ajcn/85.4.981

75. Kesztyüs D, Cermak P, Gulich M, Kesztyüs T. Adherence to Time-Restricted Feeding and Impact on Abdominal Obesity in Primary Care Patients: Results of a Pilot Study in a Pre-Post Design. Nutrients. 2019;11(12):2854. doi: https://doi.org/10.3390/nu11122854

76. Hutchison AT, Regmi P, Manoogian ENC, et al. Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obesity (Silver Spring). 2019;27(5):724-732. doi: https://doi.org/10.1002/oby.22449

77. Jamshed H, Beyl RA, Della Manna DL, et al. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients. 2019;11(6):1234. doi: https://doi.org/10.3390/nu11061234

78. Allaf M, Elghazaly H, Mohamed OG, et al. Intermittent fasting for the prevention of cardiovascular disease. Cochrane Database of Systematic Reviews 2021;1. Art. No.: CD013496. doi: https://doi.org/10.1002/14651858.CD013496.pub2.

79. Zeb F, Wu X, Chen L, et al. Effect of time-restricted feeding on metabolic risk and circadian rhythm associated with gut microbiome in healthy males. Br J Nutr. 2020;123(11):1216-1226. doi: https://doi.org/10.1017/S0007114519003428

80. Cai H, Qin YL, Shi ZY, et al. Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: a randomised controlled trial. BMC Gastroenterol. 2019;19(1):219. Published 2019 Dec 18. doi: https://doi.org/10.1186/s12876-019-1132-8

81. Gasmi M, Sellami M, Denham J, et al. Time-restricted feeding influences immune responses without compromising muscle performance in older men. Nutrition. 2018;51-52:29-37. doi: https://doi.org/10.1016/j.nut.2017.12.014

82. Tinsley GM, Moore ML, Graybeal AJ, et al. Time-restricted feeding plus resistance training in active females: a randomized trial. Am J Clin Nutr. 2019;110(3):628-640. doi: https://doi.org/10.1093/ajcn/nqz126

83. Tinsley GM, Forsse JS, Butler NK, et al. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur J Sport Sci. 2017;17(2):200-207. doi: https://doi.org/10.1080/17461391.2016.1223173

84. Singh RB, Cornelissen G, Mojto V, et al. Effects of circadian restricted feeding on parameters of metabolic syndrome among healthy subjects. Chronobiol Int. 2020;37(3):395-402. doi: https://doi.org/10.1080/07420528.2019.1701817

85. Antoni R, Robertson TM, Robertson MD, Johnston JD. A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects. Journal of Nutritional Science. 2018;7:e22. doi: https://doi.org/:10.1017/jns.2018.13

86. Martens CR, Rossman MJ, Mazzo MR, et al. Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. Geroscience. 2020;42(2):667-686. doi: https://doi.org/10.1007/s11357-020-00156-6

87. McAllister MJ, Pigg BL, Renteria LI, Waldman HS. Time-restricted feeding improves markers of cardiometabolic health in physically active college-age men: a 4-week randomized pre-post pilot study. Nutr Res. 2020;75:32-43. doi: https://doi.org/10.1016/j.nutres.2019.12.001

88. Bi H, Gan Y, Yang C, et al. Breakfast skipping and the risk of type 2 diabetes: a meta-analysis of observational studies. Public Health Nutr. 2015;18(16):3013-3019. doi: https://doi.org/10.1017/S1368980015000257

89. Azami Y, Funakoshi M, Matsumoto H, et al. Long working hours and skipping breakfast concomitant with late evening meals are associated with suboptimal glycemic control among young male Japanese patients with type 2 diabetes. J Diabetes Investig. 2019;10(1):73-83. doi: https://doi.org/10.1111/jdi.12852

90. Nakajima K, Suwa K. Association of hyperglycemia in a general Japanese population with late-night-dinner eating alone, but not breakfast skipping alone. J Diabetes Metab Disord. 2015;14:16. doi: https://doi.org/10.1186/s40200-015-0147-0

91. Okada C, Imano H, Muraki I, et al. The Association of Having a Late Dinner or Bedtime Snack and Skipping Breakfast with Overweight in Japanese Women. J Obes. 2019;2019:2439571. Published 2019 Mar 3. doi:10.1155/2019/2439571

92. Jakubowicz D, Barnea M, Wainstein J, Froy O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity (Silver Spring). 2013;21(12):2504-2512. doi: https://doi.org/10.1002/oby.20460

93. Ravussin E, Beyl RA, Poggiogalle E, et al. Early Time-Restricted Feeding Reduces Appetite and Increases Fat Oxidation But Does Not Affect Energy Expenditure in Humans. Obesity (Silver Spring). 2019;27(8):1244-1254. doi: https://doi.org/i:10.1002/oby.22518

94. Cienfuegos S, Gabel K, Kalam F, et al. Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metab. 2020;32(3):366-378.e3. doi: https://doi.org/10.1016/j.cmet.2020.06.018

95. Lowe DA, Wu N, Rohdin-Bibby L, et al. Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men With Overweight and Obesity: The TREAT Randomized Clinical Trial [published correction appears in JAMA Intern Med. 2020 Nov 1;180(11):1555] [published correction appears in JAMA Intern Med. 2021 Jun 1;181(6):883]. JAMA Intern Med. 2020;180(11):1491-1499. doi: https://doi.org/:10.1001/jamainternmed.2020.4153

96. Parr EB, Devlin BL, Lim KHC, et al. Time-Restricted Eating as a Nutrition Strategy for Individuals with Type 2 Diabetes: A Feasibility Study. Nutrients. 2020;12(11):3228. doi: https://doi.org/10.3390/nu12113228

97. Stockman MC, Thomas D, Burke J, Apovian CM. Intermittent Fasting: Is the Wait Worth the Weight? Curr Obes Rep. 2018;7(2):172-185. doi: https://doi.org/10.1007/s13679-018-0308-9

98. Hoddy KK, Kroeger CM, Trepanowski JF, et al. Safety of alternate day fasting and effect on disordered eating behaviors. Nutr J. 2015;14:44. doi: https://doi.org/10.1186/s12937-015-0029-9

99. Parr EB, Devlin BL, Radford BE, Hawley JA. A Delayed Morning and Earlier Evening Time-Restricted Feeding Protocol for Improving Glycemic Control and Dietary Adherence in Men with Overweight/Obesity: A Randomized Controlled Trial. Nutrients. 2020;12(2):505. doi: https://doi.org/10.3390/nu12020505

100. Boivin DB, Boudreau P. Impacts of shift work on sleep and circadian rhythms. Pathol Biol (Paris). 2014;62(5):292-301. doi: https://doi.org/10.1016/j.patbio.2014.08.001

101. Elgar FJ, Craig W, Trites SJ. Family dinners, communication, and mental health in Canadian adolescents. J Adolesc Health. 2013;52(4):433-438. doi: https://doi.org/10.1016/j.jadohealth.2012.07.012

102. Vesnaver E, Keller HH. Social influences and eating behavior in later life: a review. J Nutr Gerontol Geriatr. 2011;30(1):2-23. doi: https://doi.org/10.1080/01639366.2011.545038

103. Kimura Y, Wada T, Okumiya K, et al. Eating alone among community-dwelling Japanese elderly: association with depression and food diversity. J Nutr Health Aging. 2012;16(8):728-731. doi: https://doi.org/10.1007/s12603-012-0067-3

104. Carlson O, Martin B, Stote KS, et al. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism. 2007;56(12):1729-1734. doi: https://doi.org/10.1016/j.metabol.2007.07.018


Supplementary files

Review

For citations:


Berkovskaya M.A., Gurova O.Y., Khaykina I.A., Fadeev V.V. Time-restricted eating as a novel strategy for treatment of obesity and it’s comorbid conditions. Problems of Endocrinology. 2022;68(4):78-91. (In Russ.) https://doi.org/10.14341/probl13078

Views: 18301


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)