Metformin and malignant neoplasms: a possible mechanism of antitumor action and prospects for use in practice
https://doi.org/10.14341/probl13097
Abstract
Metformin is a first-line antidiabetic drug for the treatment of type 2 diabetes mellitus (DM2); its molecular target is AMP-activated protein kinase (AMPK), which is involved in many metabolic processes. Metformin not only reduces blood glucose levels and improves insulin sensitivity, but also inhibits lipolysis and reduces cardiovascular risk in patients with DM2. In recent years, it has been proven that metformin slows down the aging process, stimulates hair growth, eliminates cognitive impairment, and also has an antitumor effect. Most basic studies have shown that metformin inhibits the growth of tumor cells and promotes cellular apoptosis, while clinical studies show contradictory results. This discrepancy can be explained by the difference in the concentration of metformin between basic and clinical studies. The maximum daily dose of metformin for patients with DM2 is 2500 mg / day, and the dose used in basic research was much higher. Metformin directly activates the AMPK signaling pathway, inhibits the production of reactive oxygen species, induces the activation of mTORC1, inhibits cyclin D1, which leads to a reduction in the risk of the occurrence and development of malignant neoplasms. In addition, metformin indirectly inhibits tumor growth, proliferation, invasion and metastasis by reducing the concentration of glucose in the blood, insulin resistance, as well as by reducing inflammation and affecting the tumor microenvironment. Glycolysis plays an important role in the energy metabolism of tumors, and metformin is able to have an inhibitory effect on it. Currently, studies of the mechanism of antitumor effects of metformin are becoming more extensive and in-depth, but there are still some contradictions.
About the Authors
K. O. KuznetsovRussian Federation
Kirill O. Kuznetsov.
119021, Moscow, pereulok Holzunova 7.
SPIN-код: 3053-3773
Competing Interests:
None
E. R. Safina
Russian Federation
Elvira R. Safina.
Ufa.
SPIN-код: 3752-0845
Competing Interests:
None
D. V. Gaimakova
Russian Federation
Dilbar V. Gaimakova.
Ufa.
SPIN-код: 4542-5662
Competing Interests:
None
Ya. S. Frolova
Russian Federation
Yana S. Frolova.
Moscow.
SPIN-код: 4347-3451
Competing Interests:
None
I. Yu. Oganesyan
Russian Federation
Irina Ju. Oganesyan.
Moscow.
SPIN-код: 4388-6020
Competing Interests:
None
A. G. Sadertdinova
Russian Federation
Aliya G. Sadertdinova.
Ufa.
SPIN-код: 2248-4550
Competing Interests:
None
K. A. Nazmieva
Russian Federation
Kseniya A. Nazmieva.
Ufa.
SPIN-код: 6345-4520
Competing Interests:
None
A. H. Islamgulov
Russian Federation
Almaz H. Islamgulov.
Ufa.
SPIN-код: 3358-4883
Competing Interests:
None
A. R. Karimova
Russian Federation
Azaliya R. Karimova.
Ufa.
SPIN-код: 4728-7574
Competing Interests:
None
A. M. Galimova
Russian Federation
Adeliya M. Galimova.
Ufa.
SPIN-код: 4864-7503
Competing Interests:
None
E. V. Rizvanova
Russian Federation
Elina V. Rizvanova.
Ufa.
SPIN-код: 3558-5433
Competing Interests:
None
References
1. World Health Organization. Global Health Observatory. Geneva: World Health Organization; 2018.
2. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi: https://doi.org/10.3322/caac.21660
3. Abudawood M. Diabetes and cancer: A comprehensive review. J Res Med Sci. 2019;24(1):94. doi: https://doi.org/10.4103/jrms.JRMS_242_19
4. Onitilo AA, Engel JM, Glurich I, et al. Diabetes and cancer I: risk, survival, and implications for screening. Cancer Causes Control. 2012;23(6):967-981. doi: https://doi.org/10.1007/s10552-012-9972-3
5. Simon D, Balkau B. Diabetes mellitus, hyperglycaemia and cancer. Diabetes Metab. 2010;36(3):182-191. doi: https://doi.org/10.1016/j.diabet.2010.04.001
6. Day EA, Ford RJ, Smith BK, et al. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat Metab. 2019;1(12):1202-1208. doi: https://doi.org/10.1038/s42255-019-0146-4
7. Bharath LP, Agrawal M, McCambridge G, et al. Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation. Cell Metab. 2020;32(1):44-55. doi: https://doi.org/10.1016/j.cmet.2020.04.015
8. Samaras K, Makkar S, Crawford JD, et al. Metformin Use Is Associated With Slowed Cognitive Decline and Reduced Incident Dementia in Older Adults With Type 2 Diabetes: The Sydney Memory and Ageing Study. Diabetes Care. 2020;43(11):2691-2701. doi: https://doi.org/10.2337/dc20-0892
9. Chan AT. Metformin for cancer prevention: a reason for optimism. Lancet Oncol. 2016;17(4):407-409. doi: https://doi.org/10.1016/S1470-2045(16)00006-1
10. Samuel SM, Varghese E, Varghese S, Büsselberg D. Challenges and perspectives in the treatment of diabetes associated breast cancer. Cancer Treat Rev. 2018;70(1):98-111. doi: https://doi.org/10.1016/j.ctrv.2018.08.004
11. Col NF, Ochs L, Springmann V, et al. Metformin and breast cancer risk: a meta-analysis and critical literature review. Breast Cancer Res Treat. 2012;135(3):639-646. doi: https://doi.org/10.1007/s10549-012-2170-x
12. Roshan MH, Shing YK, Pace NP. Metformin as an adjuvant in breast cancer treatment. SAGE Open Med. 2019;7(1):205031211986511. doi: https://doi.org/10.1177/2050312119865114
13. Rennert G, Rennert HS, Gronich N, et al. Use of metformin and risk of breast and colorectal cancer. Diabetes Res Clin Pract. 2020;165(1):108232. doi: https://doi.org/10.1016/j.diabres.2020.108232
14. Patterson RE, Marinac CR, Sears DD, et al. The effects of metformin and weight loss on biomarkers associated with breast cancer outcomes. J Natl Cancer Inst. 2018;110(11):1239–1247. doi: https://doi.org/10.1093/jnci/djy040
15. Chen L, Chubak J, Boudreau DM, et al. Diabetes Treatments and Risks of Adverse Breast Cancer Outcomes among Early-Stage Breast Cancer Patients: A SEER-Medicare Analysis. Cancer Res. 2017;77(21):6033-6041. doi: https://doi.org/10.1158/0008-5472.CAN-17-0687
16. Wang JC, Li GY, Wang B, et al. Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation. J Exp Clin Cancer Res. 2019;38(1):235. doi: https://doi.org/10.1186/s13046-019-1211-2
17. Pollak MN. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov. 2012;2(9):778-790. doi: https://doi.org/10.1158/2159-8290.CD-12-0263
18. Goodwin PJ, Stambolic V, Lemieux J, et al. Evaluation of metformin in early breast cancer: a modification of the traditional paradigm for clinical testing of anti-cancer agents. Breast Cancer Res Treat. 2011;126(1):215-220. doi: https://doi.org/10.1007/s10549-010-1224-1
19. Bonanni B, Puntoni M, Cazzaniga M, et al. Dual effect of metformin on breast cancer proliferation in a randomized presurgical trial. J Clin Oncol. 2012;30(21):2593-2600. doi: https://doi.org/10.1200/JCO.2011.39.3769
20. Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61. doi: https://doi.org/10.1186/s13058-020-01296-5
21. Wahdan-Alaswad R, Fan Z, Edgerton SM, et al. Glucose promotes breast cancer aggression and reduces metformin efficacy. Cell Cycle. 2013;12(24):3759-3769. doi: https://doi.org/10.4161/cc.26641
22. Wahdan-Alaswad RS, Cochrane DR, Spoelstra NS, et al. Metformin-induced killing of triple-negative breast cancer cells is mediated by reduction in fatty acid synthase via miRNA-193b. Horm Cancer. 2014;5(6):374-389. doi: https://doi.org/10.1007/s12672-014-0188-8
23. Wahdan-Alaswad R, Harrell JC, Fan Z, et al. Metformin attenuates transforming growth factor beta (TGF-β) mediated oncogenesis in mesenchymal stem-like/claudin-low triple negative breast cancer. Cell Cycle. 2016;15(8):1046-1059. doi: https://doi.org/10.1080/15384101.2016.1152432
24. Wahdan-Alaswad RS, Salem HS, Edgerton SM, Thor AD. Metformin targets cholesterol biosynthesis pathway, GM1 lipid raft stabilization, EGFR signaling and proliferation in triple. Negative Breast Cancers. 2018;9(3):555765. doi: https://doi.org/10.19080/CTOIJ.2018.09.555765
25. Liu B, Fan Z, Edgerton SM, et al. Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle. 2011;10(17):2959-2966. doi: https://doi.org/10.4161/cc.10.17.16359
26. Chen H, Cook LS, Tang MC, et al. Relationship between Diabetes and Diabetes Medications and Risk of Different Molecular Subtypes of Breast Cancer. Cancer Epidemiol Biomarkers Prev. 2019;28(11):1802-1808. doi: https://doi.org/10.1158/1055-9965.EPI-19-0291
27. Semiglazova TY, Osipov M, Krivorotko P, et al. Neoadjuvant endocrine therapy in combination with melatonin and metformin in locally advanced breast cancer. Ann Oncol. 2019;30:v99-v100. doi: https://doi.org/10.1093/annonc/mdz241.002
28. Osipov MA, Semiglazova TU, Krivorotko PV, et al. Metformin in breast cancer treatment. Malignant tumours. 2017;7(2):76-82. (In Russ.). doi: https://doi.org/10.18027/2224-5057-2017-2-76-82
29. Dhillon SS, Groman A, Meagher A, et al. Metformin and Not Diabetes Influences the Survival of Resected Early Stage NSCLC Patients. J Cancer Sci Ther. 2014;6(7):217-222. doi: https://doi.org/10.4172/1948-5956.1000275
30. Zeng S, Gan HX, Xu JX, Liu JY. Metformin improves survival in lung cancer patients with type 2 diabetes mellitus: A meta-analysis. Med Clin (Barc). 2019;152(8):291-297. doi: https://doi.org/10.1016/j.medcli.2018.06.026
31. Brancher S, Støer NC, Weiderpass E, et al. Metformin use and lung cancer survival: a population-based study in Norway. Br J Cancer. 2021;124(5):1018-1025. doi: https://doi.org/10.1038/s41416-020-01186-9
32. Skinner H, Hu C, Tsakiridis T, et al. Addition of Metformin to Concurrent Chemoradiation in Patients With Locally Advanced Non-Small Cell Lung Cancer: The NRG-LU001 Phase 2 Randomized Clinical Trial. JAMA Oncol. 2021;7(9):1324-1332. doi: https://doi.org/10.1001/jamaoncol.2021.2318
33. Zhou X, Liu S, Lin X, et al. Metformin Inhibit Lung Cancer Cell Growth and Invasion in Vitro as Well as Tumor Formation in Vivo Partially by Activating PP2A. Med Sci Monit. 2019;25:836-846. doi: https://doi.org/10.12659/MSM.912059
34. Guraya SY. Association of type 2 diabetes mellitus and the risk of colorectal cancer: A meta-analysis and systematic review. World J Gastroenterol. 2015;21(19):6026-6031. doi: https://doi.org/10.3748/wjg.v21.i19.6026
35. Bradley MC, Ferrara A, Achacoso N, et al. A Cohort Study of Metformin and Colorectal Cancer Risk among Patients with Diabetes Mellitus. Cancer Epidemiol Biomarkers Prev. 2018;27(5):525-530. doi: https://doi.org/10.1158/1055-9965.EPI-17-0424
36. Higurashi T, Hosono K, Takahashi H, et al. Metformin for chemoprevention of metachronous colorectal adenoma or polyps in post-polypectomy patients without diabetes: a multicentre double-blind, placebo-controlled, randomised phase 3 trial. Lancet Oncol. 2016;17(4):475-483. doi: https://doi.org/10.1016/S1470-2045(15)00565-3
37. Fernandes JM, Jandrey EHF, Koyama FC, et al. Metformin as an Alternative Radiosensitizing Agent to 5-Fluorouracil During Neoadjuvant Treatment for Rectal Cancer. Dis Colon Rectum. 2020;63(7):918-926. doi: https://doi.org/10.1097/DCR.0000000000001626
38. Xie J, Xia L, Xiang W, et al. Metformin selectively inhibits metastatic colorectal cancer with the KRAS mutation by intracellular accumulation through silencing MATE1. Proc Natl Acad Sci USA. 2020;117(23):13012-13022. doi: https://doi.org/10.1073/pnas.1918845117
39. Kasper JS, Giovannucci E. A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2006;15(11):2056-2062. doi: https://doi.org/10.1158/1055-9965.EPI-06-0410
40. Lee MJ, Jayalath VH, Xu W, et al. Association between metformin medication, genetic variation and prostate cancer risk. Prostate Cancer Prostatic Dis. 2021;24(1):96-105. doi: https://doi.org/10.1038/s41391-020-0238-y
41. Margel D, Urbach DR, Lipscombe LL, et al. Metformin use and all-cause and prostate cancer-specific mortality among men with diabetes. J Clin Oncol. 2013;31(25):3069-3075. doi: https://doi.org/10.1200/JCO.2012.46.7043
42. Tseng CH. Metformin significantly reduces incident prostate cancer risk in Taiwanese men with type 2 diabetes mellitus. Eur J Cancer. 2014;50(16):2831-2837. doi: https://doi.org/10.1016/j.ejca.2014.08.007
43. Dai C, Heemers H, Sharifi N. Androgen Signaling in Prostate Cancer. Cold Spring Harb Perspect Med. 2017;7(9):a030452. doi: https://doi.org/10.1101/cshperspect.a030452
44. Wang Y, Liu G, Tong D, et al. Metformin represses androgen-dependent and androgen-independent prostate cancers by targeting androgen receptor. Prostate. 2015;75(11):1187-1196. doi: https://doi.org/10.1002/pros.23000
45. Miao ZF, Xu H, Xu YY, et al. Diabetes mellitus and the risk of gastric cancer: a meta-analysis of cohort studies. Oncotarget. 2017;8(27):44881-44892. doi: https://doi.org/10.18632/oncotarget.16487
46. Tseng CH. Metformin reduces gastric cancer risk in patients with type 2 diabetes mellitus. Aging (Albany NY). 2016;8(8):1636-1649. doi: 10.18632/aging.101019.
47. Kim J, Hyun HJ, Choi EA, et al. Metformin use reduced the risk of stomach cancer in diabetic patients in Korea: an analysis of Korean NHIS-HEALS database. Gastric Cancer. 2020;23(6):1075-1083. doi: https://doi.org/10.1007/s10120-020-01085-1
48. Han G, Gong H, Wang Y, et al. AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell. Cancer Biol Ther. 2015;16(1):77-87. doi: https://doi.org/10.4161/15384047.2014.987021
49. Koh WP, Wang R, Jin A, et al. Diabetes mellitus and risk of hepatocellular carcinoma: findings from the Singapore Chinese Health Study. Br J Cancer. 2013;108(5):1182-1188. doi: https://doi.org/10.1038/bjc.2013.25
50. Lee M-S, Hsu C-C, Wahlqvist ML, et al. Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer. 2011;11(1):20. doi: https://doi.org/10.1186/1471-2407-11-20
51. Jang WI, Kim MS, Lim JS, et al. Survival Advantage Associated with Metformin Usage in Hepatocellular Carcinoma Patients Receiving Radiotherapy: A Propensity Score Matching Analysis. Anticancer Res. 2015;35(9):5047-5054.
52. Shankaraiah RC, Callegari E, Guerriero P, et al. Metformin prevents liver tumourigenesis by attenuating fibrosis in a transgenic mouse model of hepatocellular carcinoma. Oncogene. 2019;38(45):7035-7045. doi: https://doi.org/10.1038/s41388-019-0942-z
53. Leng W, Jiang J, Chen B, Wu Q. Metformin and Malignant Tumors: Not Over the Hill. Diabetes, Metab Syndr Obes Targets Ther. 2021;14:3673-3689. doi: https://doi.org/10.2147/DMSO.S326378
54. Coyle C, Cafferty FH, Vale C, Langley RE. Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann Oncol. 2016;27(12):2184-2195. doi: https://doi.org/10.1093/annonc/mdw410
55. Anisimov VN, Popovich IG, Egormin PA, et al. Perspektivy primeneniia antidiabeticheskikh biguanidov dlia profilaktiki i lecheniia raka: rezul’taty doklinicheskikh issledovanii. Vopr. Onkologii. 2016;62(2):234-245. (In Russ.). doi: https://doi.org/10.37469/0507-3758-2016-62-2-234-244
56. Srivastava SP, Goodwin JE. Cancer Biology and Prevention in Diabetes. Cells. 2020;9(6):1380. doi: https://doi.org/10.3390/cells9061380
57. Oh TK, Song IA. Metformin Use and the Risk of Cancer in Patients with Diabetes: A Nationwide Sample Cohort Study. Cancer Prev Res (Phila). 2020;13(2):195-202. doi: https://doi.org/10.1158/1940-6207.CAPR-19-0427
58. García-Jiménez C, García-Martínez JM, Chocarro-Calvo A, De la Vieja A. A new link between diabetes and cancer: enhanced WNT/β-catenin signaling by high glucose. J Mol Endocrinol. 2013;52(1):51-66. doi: https://doi.org/10.1530/JME-13-0152
59. Pryor R, Cabreiro F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J. 2015;471(3):307-322. doi: https://doi.org/10.1042/BJ20150497
60. Li M, Hu X, Xu Y, et al. A Possible Mechanism of Metformin in Improving Insulin Resistance in Diabetic Rat Models. Int J Endocrinol. 2019;2019:1-9. doi: https://doi.org/10.1155/2019/3248527
61. Nelson ER, Chang CY, McDonnell DP. Cholesterol and breast cancer pathophysiology. Trends Endocrinol Metab. 2014;25(12):649-655. doi: https://doi.org/10.1016/j.tem.2014.10.001
62. Mantovani A. Cancer: inflammation by remote control. Nature. 2005;435(7043):752-753. doi: https://doi.org/10.1038/435752a
63. Singh N, Baby D, Rajguru JP, et al. Inflammation and cancer. Ann Afr Med. 2019;18(3):121-126. doi: https://doi.org/10.4103/aam.aam_56_18
64. Brown JC, Zhang S, Ligibel JA, et al. Effect of Exercise or Metformin on Biomarkers of Inflammation in Breast and Colorectal Cancer: A Randomized Trial. Cancer Prev Res (Phila). 2020;13(12):1055-1062. doi: https://doi.org/10.1158/1940-6207.CAPR-20-0188
65. Rokavec M, Öner MG, Li H, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124(4):1853-1867. doi: https://doi.org/10.1172/JCI73531
66. Kurelac I, Umesh Ganesh N, Iorio M, et al. The multifaceted effects of metformin on tumor microenvironment. Semin Cell Dev Biol. 2020;98:90-97. doi: https://doi.org/10.1016/j.semcdb.2019.05.010
67. Elgendy M, Cirò M, Hosseini A, et al. Combination of Hypoglycemia and Metformin Impairs Tumor Metabolic Plasticity and Growth by Modulating the PP2A-GSK3β-MCL-1 Axis. Cancer Cell. 2019;35(5):798-815. doi: https://doi.org/10.1016/j.ccell.2019.03.007
68. Maan M, Peters JM, Dutta M, Patterson AD. Lipid metabolism and lipophagy in cancer. Biochem Biophys Res Commun. 2018;504(3):582-589. doi: https://doi.org/10.1016/j.bbrc.2018.02.097
69. Zhao Y, Li H, Zhang Y, et al. Oncoprotein HBXIP Modulates Abnormal Lipid Metabolism and Growth of Breast Cancer Cells by Activating the LXRs/SREBP-1c/FAS Signaling Cascade. Cancer Res. 2016;76(16):4696-4707. doi: https://doi.org/10.1158/0008-5472.CAN-15-1734
70. Tebbe C, Chhina J, Dar SA, et al. Metformin limits the adipocyte tumor-promoting effect on ovarian cancer. Oncotarget. 2014;5(13):4746-4764. doi: https://doi.org/10.18632/oncotarget.2012
71. Ye J, Chen K, Qi L, Li R, Tang H, Zhou C, Zhai W. [Corrigendum] Metformin suppresses hypoxia-induced migration via the HIF-1α/VEGF pathway in gallbladder cancer in vitro and in vivo. Oncol Rep. 2019;41(6):3587. doi: https://doi.org/10.3892/or.2019.7101
72. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582-598. doi: https://doi.org/10.1038/nrc.2016.73
73. Xu S, Yang Z, Jin P, et al. Metformin Suppresses Tumor Progression by Inactivating Stromal Fibroblasts in Ovarian Cancer. Mol Cancer Ther. 2018;17(6):1291-1302. doi: https://doi.org/10.1158/1535-7163.MCT-17-0927
74. Zhou X, Chen J, Yi G, et al. Metformin suppresses hypoxia-induced stabilization of HIF-1α through reprogramming of oxygen metabolism in hepatocellular carcinoma. Oncotarget. 2016;7(1):873-884. doi: https://doi.org/10.18632/oncotarget.6418
75. Kim J, Kwak HJ, Cha JY, et al. Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction. J Biol Chem. 2014;289(33):23246-23255. doi: https://doi.org/10.1074/jbc.M114.577908
76. Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol. 2017;14(11):655-668. doi: https://doi.org/10.1038/nrclinonc.2017.88
77. Li L, Wang L, Li J, et al. Metformin-Induced Reduction of CD39 and CD73 Blocks Myeloid-Derived Suppressor Cell Activity in Patients with Ovarian Cancer. Cancer Res. 2018;78(7):1779-1791. doi: https://doi.org/10.1158/0008-5472.CAN-17-2460
78. Miao ZF, Adkins-Threats M, Burclaff JR, et al. A Metformin-Responsive Metabolic Pathway Controls Distinct Steps in Gastric Progenitor Fate Decisions and Maturation. Cell Stem Cell. 2020;26(6):910-925.e6. doi: https://doi.org/10.1016/j.stem.2020.03.006
79. Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214-226. doi: https://doi.org/10.1016/j.molcel.2008.03.003
80. Blandino G, Valerio M, Cioce M, et al. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat Commun. 2012;3(1):865. doi: https://doi.org/10.1038/ncomms1859
81. Yudhani RD, Astuti I, Mustofa M, et al. Metformin Modulates Cyclin D1 and P53 Expression to Inhibit Cell Proliferation and to Induce Apoptosis in Cervical Cancer Cell Lines. Asian Pac J Cancer Prev. 2019;20(6):1667-1673. doi: https://doi.org/10.31557/APJCP.2019.20.6.1667
82. Feng Y, Ke C, Tang Q, et al. Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis. 2014;5(2):1088. doi: https://doi.org/10.1038/cddis.2014.59
83. YShi Y, He Z, Jia Z, Xu C. Inhibitory effect of metformin combined with gemcitabine on pancreatic cancer cells in vitro and in vivo. Mol Med Rep. 2016;14(4):2921-2928. doi: https://doi.org/10.3892/mmr.2016.5592
84. Wu Y, Gao W-N, Xue Y-N, et al. SIRT3 aggravates metformin-induced energy stress and apoptosis in ovarian cancer cells. Exp Cell Res. 2018;367(2):137-149. doi: https://doi.org/10.1016/j.yexcr.2018.03.030
85. Sun R, Zhai R, Ma C, Miao W. Combination of aloin and metformin enhances the antitumor effect by inhibiting the growth and invasion and inducing apoptosis and autophagy in hepatocellular carcinoma through PI3K/AKT/mTOR pathway. Cancer Med. 2020;9(3):1141-1151. doi: https://doi.org/10.1002/cam4.2723
86. Li B, Zhou P, Xu K, et al. Metformin induces cell cycle arrest, apoptosis and autophagy through ROS/JNK signaling pathway in human osteosarcoma. Int J Biol Sci. 2020;16(1):74-84. doi: https://doi.org/10.7150/ijbs.33787
Supplementary files
Review
For citations:
Kuznetsov K.O., Safina E.R., Gaimakova D.V., Frolova Ya.S., Oganesyan I.Yu., Sadertdinova A.G., Nazmieva K.A., Islamgulov A.H., Karimova A.R., Galimova A.M., Rizvanova E.V. Metformin and malignant neoplasms: a possible mechanism of antitumor action and prospects for use in practice. Problems of Endocrinology. 2022;68(5):45-55. (In Russ.) https://doi.org/10.14341/probl13097

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).