Preview

Problems of Endocrinology

Advanced search

FGF23 tumor induced osteomalacia

https://doi.org/10.14341/probl13130

Abstract

Tumor induced osteomalacia is a rare acquired disease. The cause is a mesenchymal tumor secreting fibroblast growth factor 23 (FGF23). An excessive amount of FGF 23 disrupts the metabolism of phosphorus and vitamin D, which leads to severe paraneoplastic syndrome, manifested in the form of multiple fractures, severe pain in the bones and generalized myopathy. With oncogenic osteomalacia, a complete cure is possible with radical resection of the tumor. Unfortunately, localization, small size of formations and rare frequency of occurrence lead to the fact that the disease remains unrecognized for a long time and leads to severe, disabling consequences. A step-by-step approach to diagnosis improves treatment outcomes. First, a thorough anamnesis is collected, then functional visualization is performed and the diagnosis is confirmed by anatomical visualization of the tumor. After that, the method of choice is a surgical treatment. If resection is not possible, then conservative therapy with active metabolites of vitamin D and phosphorus salts is indicated. New therapeutic approaches, such as the antibody to FGF23 or the pan-inhibitor of receptors to FGF, are actively developing. This article provides an overview of modern approaches to the diagnosis and treatment of this disease.

About the Authors

S. A. Gronskaia
Endocrinology Research Centre
Russian Federation

Sofya A. Gronskaia - MD.

11 Dm. Ulyanova street, 117036 Moscow.

SPIN-код: 7624-0391


Competing Interests:

None



Zh. E. Belaya
Endocrinology Research Centre
Russian Federation

Zhanna E. Belaya - MD, PhD, Professor.

Moscow.

SPIN-код: 4746-7173


Competing Interests:

None



G. A. Melnichenko
Endocrinology Research Centre
Russian Federation

Galina A. Melnichenko - MD, PhD, Professor.

Moscow.

SPIN-код:8615-0038


Competing Interests:

None



References

1. Folpe AL, Fanburg-Smith JC, Billings SD, et al. Most Osteomalacia-associated Mesenchymal Tumors Are a Single Histopathologic Entity. Am J Surg Pathol. 2004;28(1):1-30. doi: https://doi.org/10.1097/00000478-200401000-00001

2. Florenzano P, Hartley IR, Jimenez M, et al. Tumor-Induced Osteomalacia. Calcif Tissue Int. 2021;108(1):128-142. doi: https://doi.org/10.1007/s00223-020-00691-6

3. Feng J, Jiang Y, Wang O, et al. The diagnostic dilemma of tumor induced osteomalacia: a retrospective analysis of 144 cases. Endocr J. 2017;64(7):675-683. doi: https://doi.org/10.1507/endocrj.EJ16-0587

4. Kobayashi H, Ito N, Akiyama T, et al. Prevalence and clinical outcomes of hip fractures and subchondral insufficiency fractures of the femoral head in patients with tumour-induced osteomalacia. Int Orthop. 2017;41(12):2597-2603. doi: https://doi.org/10.1007/s00264-017-3610-3

5. Toro L, Barrientos V, León P, et al. Erythropoietin induces bone marrow and plasma fibroblast growth factor 23 during acute kidney injury. Kidney Int. 2018;93(5):1131-1141. doi: https://doi.org/10.1016/j.kint.2017.11.018

6. Rabadi S, Udo I, Leaf DE, Waikar SS, Christov M. Acute blood loss stimulates fibroblast growth factor 23 production. Am J Physiol Physiol. 2018;314(1):F132-F139. doi: https://doi.org/10.1152/ajprenal.00081.2017

7. Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 Is a Potent Regulator of Vitamin D Metabolism and Phosphate Homeostasis. J Bone Miner Res. 2003;19(3):429-435. doi: https://doi.org/10.1359/JBMR.0301264

8. Novikov PV. Rakhit i nasledstvennye rakhitopodobnye zabolevaniia u detei: diagnostika, lechenie, profilaktika: monografiia. Moscow: Triada-Kh; 2006. 336 p. (In Russ.).

9. Eremkina AK, Mirnaya SS, Gorbacheva AM, et al. The case of oncogenic hypophosphatemic osteomalacia. Obesity and metabolism. 2020;17(2):220-227. doi: https://doi.org/10.14341/omet12472

10. Gronskaia S, Melnichenko G, Rozhinskaya L, et al. A registry for patients with chronic hypoparathyroidism in Russian adults. Endocr Connect. 2020;9(7):627-636. doi: https://doi.org/10.1530/EC-20-0219

11. Lesnyak O, Gladkova E, Aleksandrov N, et al. Treatment of high fracture risk patients in routine clinical practice. Arch Osteoporos. 2020;15(1):184. doi: https://doi.org/10.1007/s11657-020-00851-z

12. Lewiecki EM, Jackson A, Lake AF, et al. Bone Health TeleECHO: a Force Multiplier to Improve the Care of Skeletal Diseases in Underserved Communities. Curr Osteoporos Rep. 2019;17(6):474-482. doi: https://doi.org/10.1007/s11914-019-00543-9

13. Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770-774. doi: https://doi.org/10.1038/nature05315

14. Grebennikova TA, Umiarova DS, Slashchuk KY, et al. Tumor-induced osteomalacia: a clinical case report. Osteoporos Bone Dis. 2019;21(4):24-28. doi: https://doi.org/10.14341/osteo10264

15. Tella SH, Amalou H, Wood BJ, et al. Multimodality Image-Guided Cryoablation for Inoperable Tumor-Induced Osteomalacia. J Bone Miner Res. 2017;32(11):2248-2256. doi: https://doi.org/10.1002/jbmr.3219

16. Li X, Jiang Y, Huo L, et al. Nonremission and Recurrent Tumor-Induced Osteomalacia: A Retrospective Study. J Bone Miner Res. 2020;35(3):469-477. doi: https://doi.org/10.1002/jbmr.3903.

17. Mak MP, da Costa e Silva VT, Martin RM, et al. Advanced prostate cancer as a cause of oncogenic osteomalacia: an underdiagnosed condition. Support Care Cancer. 2012;20(9):2195-2197. doi: https://doi.org/10.1007/s00520-012-1474-z

18. Savva C, Adhikaree J, Madhusudan S, Chokkalingam K. Oncogenic osteomalacia and metastatic breast cancer: a case report and review of the literature. J Diabetes Metab Disord. 2019;18(1):267-272. doi: https://doi.org/10.1007/s40200-019-00398-y

19. Lin H-A, Shih S-R, Tseng Y-T, et al. Ovarian Cancer-Related Hypophosphatemic Osteomalacia—A Case Report. J Clin Endocrinol Metab. 2014;99(12):4403-4407. doi: https://doi.org/10.1210/jc.2014-2120

20. Reinert RB, Bixby D, Koenig RJ. Fibroblast Growth Factor 23–Induced Hypophosphatemia in Acute Leukemia. J Endocr Soc. 2018;2(5):437-443. doi: https://doi.org/10.1210/js.2018-00010

21. Chong WH, Molinolo AA, Chen CC, Collins MT. Tumor-induced osteomalacia. Endocr Relat Cancer. 2011;18(3):R53-R77. doi: https://doi.org/10.1530/ERC-11-0006

22. Folpe AL. Phosphaturic mesenchymal tumors: A review and update. Semin Diagn Pathol. 2019;36(4):260-268. doi: https://doi.org/10.1053/j.semdp.2019.07.002

23. White KE, Larsson TE, Econs MJ. The Roles of Specific Genes Implicated as Circulating Factors Involved in Normal and Disordered Phosphate Homeostasis: Frizzled Related Protein-4, Matrix Extracellular Phosphoglycoprotein, and Fibroblast Growth Factor 23. Endocr Rev. 2006;27(3):221-241. doi: https://doi.org/10.1210/er.2005-0019

24. Armelin HA. Pituitary Extracts and Steroid Hormones in the Control of 3T3 Cell Growth. Proc Natl Acad Sci. 1973;70(9):2702-2706. doi: https://doi.org/10.1073/pnas.70.9.2702

25. Gospodarowicz D. Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature. 1974;249(5453):123-127. doi: https://doi.org/10.1038/249123a0

26. Hui Q, Jin Z, Li X, Liu C, Wang X. FGF Family: From Drug Development to Clinical Application. Int J Mol Sci. 2018;19(7):1875. doi: https://doi.org/10.3390/ijms19071875

27. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol. 2001;2(3):REVIEWS3005. doi: https://doi.org/10.1186/gb-2001-2-3-reviews3005

28. Billings PC, Pacifici M. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Connect Tissue Res. 2015;56(4):272-280. doi: https://doi.org/10.3109/03008207.2015.1045066

29. Kim J-H, Hwang K-H, Park K-S, et al. Biological Role of Anti-aging Protein Klotho. J Lifestyle Med. 2015;5(1):1-6. doi: https://doi.org/10.15280/jlm.2015.5.1.1

30. Comps-Agrar L, Dunshee DR, Eaton DL, Sonoda J. Unliganded fibroblast growth factor receptor 1 forms density-independent dimers. J Biol Chem. 2015;290(40):24166-24177. doi: https://doi.org/10.1074/jbc.M115.681395

31. Fedyanin MY, Khmelkova DN, Serebriyskaya TS, et al. Перспективы терапевтического воздействия на сигнальный путь FGFR. Adv Mol Oncol. 2015;2(1):027. doi: https://doi.org/10.17650/2313-805X.2015.2.1.027-038

32. Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000;277(2):494-498. doi: https://doi.org/10.1006/bbrc.2000.3696

33. White KE, Evans WE, O’Riordan JLH, et al. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26(3):345-348. doi: https://doi.org/10.1038/81664

34. Shimada T, Mizutani S, Muto T, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci. 2001;98(11):6500-6505. doi: https://doi.org/10.1073/pnas.101545198

35. Simpson MA, Hsu R, Keir LS, et al. Mutations in FAM20C Are Associated with Lethal Osteosclerotic Bone Dysplasia (Raine Syndrome), Highlighting a Crucial Molecule in Bone Development. Am J Hum Genet. 2007;81(5):906-912. doi: https://doi.org/10.1086/522240

36. Raine J, Winter RM, Davey A, Tucker SM. Unknown syndrome: microcephaly, hypoplastic nose, exophthalmos, gum hyperplasia, cleft palate, low set ears, and osteosclerosis. J Med Genet. 1989;26(12):786-788. doi: https://doi.org/10.1136/jmg.26.12.786

37. Liu S, Zhou J, Tang W, et al. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Metab. 2006;291(1):E38-E49. doi: https://doi.org/10.1152/ajpendo.00008.2006

38. Francis F, Hennig S, Korn B, et al. A gene (PEX) with homologies to endopeptidases is mutated in patients with X–linked hypophosphatemic rickets. Nat Genet. 1995;11(2):130-136. doi: https://doi.org/10.1038/ng1095-130

39. Lorenz-Depiereux B, Schnabel D, Tiosano D, et al. Loss-of-Function ENPP1 Mutations Cause Both Generalized Arterial Calcification of Infancy and Autosomal-Recessive Hypophosphatemic Rickets. Am J Hum Genet. 2010;86(2):267-272. doi: https://doi.org/10.1016/j.ajhg.2010.01.006

40. Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38(11):1310-1315. doi: https://doi.org/10.1038/ng1905

41. Bergwitz C, Jüppner H. Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23. Annu Rev Med. 2010;61(1):91-104. doi: https://doi.org/10.1146/annurev.med.051308.111339

42. White KE, Evans WE, O’Riordan JLH, et al. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26(3):345-348. doi: https://doi.org/10.1038/81664

43. Edmonston D, Wolf M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol. 2020;16(1):7-19. doi: https://doi.org/10.1038/s41581-019-0189-5

44. Takashi Y, Fukumoto S. Phosphate-sensing and regulatory mechanism of FGF23 production. J Endocrinol Invest. 2020;43(7):877-883. doi: https://doi.org/10.1007/s40618-020-01205-9

45. Park MY, Herrmann SM, Saad A, et al. Biomarkers of Kidney Injury and Klotho in Patients with Atherosclerotic Renovascular Disease. Clin J Am Soc Nephrol. 2015;10(3):443-451. doi: https://doi.org/10.2215/CJN.07290714

46. David V, Dai B, Martin A, et al. Calcium Regulates FGF-23 Expression in Bone. Endocrinology. 2013;154(12):4469-4482. doi: https://doi.org/10.1210/en.2013-1627

47. Lavi-Moshayoff V, Wasserman G, Meir T, et al. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Physiol. 2010;299(4):F882-F889. doi: https://doi.org/10.1152/ajprenal.00360.2010

48. Meir T, Durlacher K, Pan Z, et al. Parathyroid hormone activates the orphan nuclear receptor Nurr1 to induce FGF23 transcription. Kidney Int. 2014;86(6):1106-1115. doi: https://doi.org/10.1038/ki.2014.215

49. Xiao L, Esliger A, Hurley MM. Nuclear fibroblast growth factor 2 (FGF2) isoforms inhibit bone marrow stromal cell mineralization through FGF23/FGFR/MAPK in vitro. J Bone Miner Res. 2013;28(1):35-45. doi: https://doi.org/10.1002/jbmr.1721

50. Smith RC, O’Bryan LM, Farrow EG, et al. Circulating αKlotho influences phosphate handling by controlling FGF23 production. J Clin Invest. 2012;122(12):4710-4715. doi: https://doi.org/10.1172/JCI64986

51. Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WIREs Dev Biol. 2015;4(3):215-266. doi: https://doi.org/10.1002/wdev.176

52. Teven CM, Farina EM, Rivas J, Reid RR. Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis. 2014;1(2):199-213. doi: https://doi.org/10.1016/j.gendis.2014.09.005

53. Bernuy J, Gonzales GF. Metabolismo mineral óseo en pacientes con enfermedad renal crónica: revisión sobre su fisiopatología y morbimortalidad. Rev Peru Med Exp Salud Publica. 2015;32(2):326. doi: https://doi.org/10.17843/rpmesp.2015.322.1628

54. Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561-568. doi: https://doi.org/10.1172/JCI19081

55. Rabadi S, Udo I, Leaf DE, et al. Acute blood loss stimulates fibroblast growth factor 23 production. Am J Physiol Renal Physiol. 2018;314(1):F132-F139. doi: https://doi.org/10.1152/ajprenal.00081.2017

56. Tohyama O, Imura A, Iwano A, et al. Klotho Is a Novel β-Glucuronidase Capable of Hydrolyzing Steroid β-Glucuronides. J Biol Chem. 2004;279(11):9777-9784. doi: https://doi.org/10.1074/jbc.M312392200

57. Ho BB, Bergwitz C. FGF23 signalling and physiology. J Mol Endocrinol. 2021;66(2):R23-R32. doi: https://doi.org/10.1530/JME-20-0178

58. Rodelo-Haad C, Santamaria R, Muñoz-Castañeda JR, et al. FGF23, Biomarker or Target? Toxins (Basel). 2019;11(3):175. doi: https://doi.org/10.3390/toxins11030175

59. Prader A, Illig R, Uehlinger E, Stalder G. [Rickets following bone tumor]. Helv Paediatr Acta. 1959;14:554-565.

60. Fernández-Cooke E, Cruz-Rojo J, Gallego C, et al. Tumor-Induced Rickets in a Child With a Central Giant Cell Granuloma: A Case Report. Pediatrics. 2015;135(6):e1518-e1523. doi: https://doi.org/10.1542/peds.2014-2218

61. Jung G-H, Kim J-D, Cho Y, et al. A 9-month-old phosphaturic mesenchymal tumor mimicking the intractable rickets. J Pediatr Orthop B. 2010;19(1):127-132. doi: https://doi.org/10.1097/BPB.0b013e32832f59cb.

62. Chong WH, Andreopoulou P, Chen CC, et al. Tumor localization and biochemical response to cure in tumor-induced osteomalacia. J Bone Miner Res. 2013;28(6):1386-1398. doi: https://doi.org/10.1002/jbmr.1881

63. Mamedova E, Kolodkina A, Vasilyev EV, et al. Successful Use of Denosumab for Life-Threatening Hypercalcemia in a Pediatric Patient with Primary Hyperparathyroidism. Horm Res Paediatr. 2020;93(4):272-278. doi: https://doi.org/10.1159/000510625

64. Crossen SS, Zambrano E, Newman B, et al. Tumor-induced Osteomalacia in a 3-Year-Old With Unresectable Central Giant Cell Lesions. J Pediatr Hematol Oncol. 2017;39(1):e21-e24. doi: https://doi.org/10.1097/MPH.0000000000000686

65. Sundaram M, McCarthy EF. Oncogenic osteomalacia. Skeletal Radiol. 2000;29(3):117-24. doi: https://doi.org/10.1007/s002560050581

66. Mamedova E, Dimitrova D, Przhiyalkovskaya E, et al. Non-lethal Raine Syndrome in a Middle-Aged Woman Caused by a Novel FAM20C Mutation. Calcif Tissue Int. 2019;105(5):567-572. doi: https://doi.org/10.1007/s00223-019-00599-w

67. Grebennikova TA, Belaia ZhE, Tsoriev TT, et al. The endocrine function of the bone tissue. Osteoporosis and Bone Diseases. 2015;18(1):28-37. (In Russ.). doi: https://doi.org/10.14341/osteo2015128-37

68. Belaya Z, Golounina O, Nikitin A, et al. Multiple bilateral hip fractures in a patient with dyskeratosis congenita caused by a novel mutation in the PARN gene. Osteoporos Int. 2021;32(6):1227-1231. doi: https://doi.org/10.1007/s00198-020-05758-6

69. Yukina M, Nuralieva N, Sorkina E, et al. Atypical progeroid syndrome (p.E262K LMNA mutation): a rare cause of short stature and osteoporosis. Endocrinol Diabetes Metab Case Reports. 2021;2021(6):1227-1231. doi: https://doi.org/10.1530/EDM-20-0188

70. El-Maouche D, Sadowski SM, Papadakis GZ, et al. 68Ga-DOTATATE for Tumor Localization in Tumor-Induced Osteomalacia. J Clin Endocrinol Metab. 2016;101(10):3575-3581. doi: https://doi.org/10.1210/jc.2016-2052

71. Ito N, Shimizu Y, Suzuki H, et al. Clinical utility of systemic venous sampling of FGF23 for identifying tumours responsible for tumour-induced osteomalacia. J Intern Med. 2010;268(4):390-394. doi: https://doi.org/10.1111/j.1365-2796.2010.02262.x

72. Andreopoulou P, Dumitrescu CE, Kelly MH, et al. Selective venous catheterization for the localization of phosphaturic mesenchymal tumors. J Bone Miner Res. 2011;26(6):1295-1302. doi: https://doi.org/10.1002/jbmr.316

73. Wang H, Zhong D, Liu Y, et al. Surgical Treatments of Tumor-Induced Osteomalacia Lesions in Long Bones: Seventeen Cases with More Than One Year of Follow-up. J Bone Joint Surg Am. 2015;97(13):1084-1094. doi: https://doi.org/10.2106/JBJS.N.01299

74. Lee JC, Su SY, Changou CA, et al. Characterization of FN1-FGFR1 and novel FN1-FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors. Mod Pathol. 2016;29(11):1335-1346. doi: https://doi.org/10.1038/modpathol.2016.137.

75. Carpenter TO, Imel EA, Holm IA, et al. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res. 2011;26(7):1381-1388. doi: https://doi.org/10.1002/jbmr.340

76. Jan De Beur S, Miller P, Weber T, et al. OR13-1 Burosumab Improves the Biochemical, Skeletal, and Clinical Symptoms of Tumor-Induced Osteomalacia Syndrome. J Endocr Soc. 2019;3(S1):1386-1398. doi: https://doi.org/10.1210/js.2019-OR13-1

77. Wöhrle S, Bonny O, Beluch N, et al. FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone. J Bone Miner Res. 2011;26(10):2486-2497. doi: https://doi.org/10.1002/jbmr.478

78. Wöhrle S, Henninger C, Bonny O, et al. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. J Bone Miner Res. 2013;28(4):899-911. doi: https://doi.org/10.1002/jbmr.1810

79. Fumarola C, Bozza N, Castelli R, et al. Expanding the Arsenal of FGFR Inhibitors: A Novel Chloroacetamide Derivative as a New Irreversible Agent With Anti-proliferative Activity Against FGFR1-Amplified Lung Cancer Cell Lines. Front Oncol. 2019;9(S1):1386-1398. doi: https://doi.org/10.3389/fonc.2019.00179

80. Collins MT. Striking response of tumor-induced osteomalacia to the FGFR inhibitor NVP-BGJ398. In: American Society of Bone and Mineral Research annual meeting. Seattle: WA; 2015.

81. Mishra SK, Kuchay MS, Sen IB, et al. Successful Management Of Tumor‐Induced Osteomalacia with Radiofrequency Ablation: A Case Series. JBMR Plus. 2019;3(7):116-120. doi: https://doi.org/10.1002/jbm4.10178

82. Payne RB. Renal Tubular Reabsorption of Phosphate (TmP/GFR): Indications and Interpretation. Ann Clin Biochem Int J Lab Med. 1998;35(2):201-206. doi: https://doi.org/10.1177/000456329803500203


Supplementary files

1. Figure 1. Synthesis of FGF23 in the osteocyte. Regulation of FGF23 expression at the levels of transcription and post-translational modifications.
Subject
Type Исследовательские инструменты
View (237KB)    
Indexing metadata ▾
2. Figure 2. Secretion and regulation of FGF23 concentration in the systemic circulation
Subject
Type Исследовательские инструменты
View (197KB)    
Indexing metadata ▾
3. Figure 3. Effects of FGF23
Subject
Type Исследовательские инструменты
View (293KB)    
Indexing metadata ▾

Review

For citations:


Gronskaia S.A., Belaya Zh.E., Melnichenko G.A. FGF23 tumor induced osteomalacia. Problems of Endocrinology. 2022;68(5):56-66. (In Russ.) https://doi.org/10.14341/probl13130

Views: 3986


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)