Preview

Problems of Endocrinology

Advanced search

Pattern of biochemical markers of mineral and bone disorders in kidney transplant recipients: real-world data

https://doi.org/10.14341/probl13167

Abstract

BACKGROUND: There is a lack of studies providing comprehensive data on the prevalence of mineral and bone disorders (MBD) laboratory abnormalities after kidney transplantation in Russia.

AIM: to obtain real-world data on the prevalence of the main mineral abnormalities among kidney transplant recipients and to revise their concomitant MBD therapy.

METHOD: This cross-sectional study included 236 patients with successful kidney transplantation. Their serum intact parathyroid hormone (iPTH), total calcium (Ca), phosphorus (P), and alkaline phosphatase (ALP) levels were measured.

RESULTS: Only 6.2% of our cohort had all laboratory parameters within the target range, whereas persistent HPT along with hypercalcemia was noted in almost one third of the patients (31%). Normal iPTH levels were observed in 13% cases; 84% of the patients had hyperparathyroidism. The fraction of patients with target iPTH did not differ between the groups with normal and decreased estimated glomerular filtration rate (eGFR) (p=0.118). Hypercalcemia was observed in 29% cases. The serum P level varied significantly in groups with different eGFR (p<0.0001), increasing with declining graft function. Furthermore, 40.7% of patients had ALP above the target range. While 123 patients received active vitamin D (alfacalcidol), 33 received monotherapy with inactive vitamin D (cholecalciferol). The control group consisted of 57 medication-naïve patients. The serum total Ca level varied significantly between the groups (p=0.0006), being higher in patients supplemented with cholecalciferol. The fraction of patients with normocalcemia was lowest in the cholecalciferol group (chi-square, р=0.0018).

CONCLUSION: The prevalence of biochemical abnormalities after kidney transplantation is high. Alfacalcidol usage may be safer than using cholecalciferol to prevent hypercalcemia development.

About the Authors

A. V. Vatazin
Moscow Regional Research and Clinical Institute
Russian Federation

Andrey V. Vatazin - MD, PhD, Professor.

Moscow


Competing Interests:

none



E. V. Parshina
Saint-Petersburg State University Hospital
Russian Federation

Ekaterina V. Parshina - MD.

7/9, Universitetskaya emb., 109103, Saint-Petersburg


Competing Interests:

none



R. O. Kantaria
Moscow Regional Research and Clinical Institute
Russian Federation

Rusudana O. Kantaria - MD, PhD.


Competing Interests:

none



V. A. Stepanov
Moscow Regional Research and Clinical Institute
Russian Federation

Vadim A. Stepanov - MD, PhD.


Competing Interests:

none



A. B. Zulkarnaev
Moscow Regional Research and Clinical Institute
Russian Federation

Alexey B. Zulkarnaev - MD, PhD, Assistant Professor.


Competing Interests:

none



References

1. Andrusev AM, Tomilina NA, Peregudova NG, Shinkarev MB. Renal replacement therapy of terminal chronic renal failure in the Russian Federation 2014–2018. Report on the data of the All-Russian Register of renal replacement therapy of the Russian Dialysis Society. Nephrology and dialysis. 2020;22(1):1-71. (In Russ.). doi: https://doi.org/10.28996/2618-9801-2020-1suppl-1-71

2. Wolfe RA, Ashby VB, Milford EL, et al. Comparison of Mortality in All Patients on Dialysis, Patients on Dialysis Awaiting Transplantation, and Recipients of a First Cadaveric Transplant. N Engl J Med. 1999;341(23):1725-1730. doi: https://doi.org/10.1056/NEJM199912023412303

3. Huffer WE, Kuzela D, Popovtzer MM, Starzl TE. Metabolic bone disease in chronic renal failure. II. Renal transplant patients. Am J Pathol. 1975;78(3):385-400.

4. Nielsen HE, Christensen MS, Melsen F, Torring S. Bone disease, hypophosphatemia and hyperparathyroidism after renal transplantation. Adv Exp Med Biol. 1977;(81):603-610. doi: https://doi.org/10.1007/978-1-4613-4217-5_58

5. Bleskestad I, Bergrem H, Leivestad T, et al. Parathyroid hormone and clinical outcome in kidney transplant patients with optimal transplant function. Clin Transplant. 2014;28(4):479-486. doi: https://doi.org/10.1111/ctr.12341

6. Prakobsuk S, Sirilak S, Vipattawat K, et al. Hyperparathyroidism and increased fractional excretion of phosphate predict allograft loss in long-term kidney transplant recipients. Clin Exp Nephrol. 2016;21(5):926-931. doi: https://doi.org/10.1007/s10157-016-1370-9

7. Nielsen HE, Christensen MS, Meisen F, Tørring S. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2017;7(3):e1. doi: https://doi.org/10.1016/j.kisu.2017.10.001

8. Nephro.ru [Интернет]. Professional association: Russian public association «Russian dialysis society». National clinical guidelines on CKD-MBD. 2015. (In Russ.). Доступно по: http://www.nephro.ru/content/files/recomendations/ckdmbdNationalGuidelines.pdf. Ссылка активна на 01.03.2023.

9. Evenepoel P, Claes K, Kuypers D, et al. Natural history of parathyroid function and calcium metabolism after kidney transplantation: a single-centre study. Nephrol Dial Transplant. 2004;19(5):1281-1287. doi: https://doi.org/10.1093/ndt/gfh128

10. Nielsen HE, Christensen MS, Meisen F, Tørring S. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1-150. doi: https://doi.org/10.1038/kisup.2012.73

11. Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93(3):491-507. doi: https://doi.org/10.1093/biomet/93.3.491

12. Setterberg L, Sandberg J, Elinder C-G, Nordenstrom J. Bone demineralization after renal transplantation: contribution of secondary hyperparathyroidism manifested by hypercalcaemia. Nephrol Dial Transplant. 1996;11(9):1825-1828. doi: https://doi.org/10.1093/oxfordjournals.ndt.a027676

13. Perrin P, Caillard S, Javier R, et al. Persistent hyperparathyroidism is a major risk factor for fractures in the five years after kidney transplantation. Am J Transplant. 2013;13(10):2653-2663. doi: https://doi.org/10.1111/ajt.12425

14. Evenepoel P. Recovery versus persistence of disordered mineral metabolism in kidney transplant recipients. Semin Nephrol. 2013;33(2):191-203. doi: https://doi.org/10.1016/j.semnephrol.2012.12.019

15. Bleskestad I, Bergrem H, Leivestad T, Gøransson L. Intact parathyroid hormone levels in renal transplant patients with normal transplant function. Clin Transplant. 2011;25(5):E566-E570. doi: https://doi.org/10.1111/j.1399-0012.2011.01515.x

16. Novokshonоv KY, Karelina YV, Zemchenkov AY, et al. Chronic kidney disease mineral and bone disorder markers in screening study among dialysis patients in North-West federal region of Russia. Nefrologia. 2016;20(1):36-50. (In Russ.).

17. Lehmann G, Ott U, Stein G, et al. Renal osteodystrophy after successful renal transplantation: a histomorphometric analysis in 57 patients. Transplant Proc. 2007;39(10):3153-3158. doi: https://doi.org/10.1016/j.transproceed.2007.10.001

18. van Londen M, Aarts B, Deetman P, et al. Post-transplant hypophosphatemia and the risk of death-censored graft failure and mortality after kidney transplantation. Clin J Am Soc Nephrol. 2017;12(8):1301-1310. doi: https://doi.org/10.2215/cjn.10270916

19. Baia L, Heilberg I, Navis G, de Borst M. Phosphate and FGF-23 homeostasis after kidney transplantation. Nat Rev Nephrol. 2015;11(11):656-666. doi: https://doi.org/10.1038/nrneph.2015.153

20. Loffing J, Lötscher M, Kaissling B, et al. Renal Na/H exchanger NHE-3 and Na-PO4 cotransporter NaPi-2 protein expression in glucocorticoid excess and deficient states. J Am Soc Nephrol. 1998;9(9):1560-1567. doi: https://doi.org/10.1681/ASN.V991560

21. Borowitz SM, Granrud GS. Glucocorticoids inhibit intestinal phosphate absorption in developing rabbits. J Nutr. 1992;122(6):1273-1279. doi: https://doi.org/10.1093/jn/122.6.1273

22. Haller M, Amatschek S, Wilflingseder J, et al. Sirolimus induced phosphaturia is not caused by inhibition of renal apical sodium phosphate cotransporters. PLoS One. 2012;7(7):e39229. doi: https://doi.org/10.1371/journal.pone.0039229

23. Schwarz C, Böhmig G, Steininger R, et al. Impaired phosphate handling of renal allografts is aggravated under rapamycin‐based immunosuppression. Nephrol Dial Transplant. 2001;16(2):378-382. doi: https://doi.org/10.1093/ndt/16.2.378

24. Kempe D, Dermaku-Sopjani M, Frohlich H, et al. Rapamycin-induced phosphaturia. Nephrol Dial Transplant. 2010;25(9):2938-2944. doi: https://doi.org/10.1093/ndt/gfq172

25. Grignani G, Palmerini E, Ferraresi V, et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 2015;16(1):98-107. doi: https://doi.org/10.1016/S1470-2045(14)71136-2

26. Bouquegneau A, Salam S, Delanaye P, et al. Bone disease after kidney transplantation. Clin J Am Soc Nephrol. 2016;11(7):1282-1296. doi: https://doi.org/10.2215/cjn.11371015

27. Kanaan N, Claes K, Devogelaer J, et al. Fibroblast growth factor-23 and parathyroid hormone are associated with post-transplant bone mineral density loss. Clin J Am Soc Nephrol. 2010;5(10):1887-1892. doi: https://doi.org/10.2215/cjn.00950110

28. Evenepoel P, Claes K, Meijers B, et al. Bone mineral density, bone turnover markers, and incident fractures in de novo kidney transplant recipients. Kidney Int. 2019;95(6):1461-1470. doi: https://doi.org/10.1016/j.kint.2018.12.024

29. Jeon H, Kim Y, Park S, et al. Association of serum phosphorus concentration with mortality and graft failure among kidney transplant recipients. Clin J Am Soc Nephrol. 2017;12(4):653-662. doi: https://doi.org/10.2215/cjn.07090716

30. Nakai K, Mitsuiki K, Kuroki Y, et al. Relative hypophosphatemia early after transplantation is a predictor of good kidney graft function. Clin Exp Nephrol. 2019;23(9):1161-1168. doi: https://doi.org/10.1007/s10157-019-01756-z

31. Connolly G, Cunningham R, McNamee P, et al. Elevated serum phosphate predicts mortality in renal transplant recipients. Transplantation. 2009;87(7):1040-1044. doi: https://doi.org/10.1097/tp.0b013e31819cd122

32. Merhi B, Shireman T, Carpenter M, et al. Serum phosphorus and risk of cardiovascular disease, all-cause mortality, or graft failure in kidney transplant recipients: an ancillary study of the FAVORIT trial cohort. Am J Kidney Dis. 2017;70(3):377-385. doi: https://doi.org/10.1053/j.ajkd.2017.04.014

33. Pieper A, Buhle F, Bauer S, et al. The effect of sevelamer on the pharmacokinetics of cyclosporin A and mycophenolate mofetil after renal transplantation. Nephrol Dial Transplant. 2004;19(10):2630-2633. doi: https://doi.org/10.1093/ndt/gfh446

34. Alagoz S, Trabulus S. Long-term evaluation of mineral metabolism after kidney transplantation. Transplant Proc. 2019;51(7):2330-2333. doi: https://doi.org/10.1016/j.transproceed.2019.01.181

35. Delos Santos R, Rossi A, Coyne D, Maw T. Management of post-transplant hyperparathyroidism and bone disease. Drugs. 2019;79(5):501-513. doi: https://doi.org/10.1007/s40265-019-01074-4

36. Keyzer C, Riphagen I, Joosten M, et al. Associations of 25(OH) and 1,25(OH)2 vitamin D with long-term outcomes in stable renal transplant recipients. J Clin Endocrinol Metab. 2015;100(1):81-89. doi: https://doi.org/10.1210/jc.2014-3012

37. Messa P, Regalia A, Alfieri C. Nutritional vitamin D in renal transplant patients: speculations and reality. Nutrients. 2017;9(6):550. doi: https://doi.org/10.3390/nu9060550

38. Cianciolo G, Galassi A, Capelli I, et al. Vitamin D in kidney transplant recipients: mechanisms and therapy. Am J Nephrol. 2016;43(6):397-407. doi: https://doi.org/10.1159/000446863


Supplementary files

1. Figure 1. PTH levels in groups of kidney transplant recipients with different graft function. Kruskal-Wallis test, p<0.0001. Horizontal lines indicate comparisons of pairs of groups for which significant differences were obtained.
Subject
Type Исследовательские инструменты
View (100KB)    
Indexing metadata ▾
2. Figure 2. Distribution of patients with preserved and reduced AT function by category according to PTH level
Subject
Type Исследовательские инструменты
View (140KB)    
Indexing metadata ▾
3. Figure 3. Serum phosphorus levels in groups of kidney transplant recipients with different graft function.
Subject
Type Исследовательские инструменты
View (96KB)    
Indexing metadata ▾
4. Figure 4. A - prevalence of target values of PTH, total calcium, phosphorus and alkaline phosphatase in kidney transplant recipients.
Subject
Type Исследовательские инструменты
View (405KB)    
Indexing metadata ▾
5. Figure 5. Distribution of patients receiving and not receiving MCI-CKD therapy, categorized by the level of total calcium, PTH, phosphorus and alkaline phosphatase
Subject
Type Исследовательские инструменты
View (121KB)    
Indexing metadata ▾
6. Figure 6. Serum total calcium levels of PT recipients in the groups receiving and not receiving MCI-CKD therapy.
Subject
Type Исследовательские инструменты
View (109KB)    
Indexing metadata ▾
7. Figure 7. Distribution of patients receiving and not receiving therapy with various vitamin D preparations, categorized by the level of total calcium, PTH, phosphorus and alkaline phosphatase.
Subject
Type Исследовательские инструменты
View (166KB)    
Indexing metadata ▾
8. Figure 8. eGFR values in PT recipients receiving and not receiving therapy with various vitamin D preparations.
Subject
Type Исследовательские инструменты
View (136KB)    
Indexing metadata ▾

Review

For citations:


Vatazin A.V., Parshina E.V., Kantaria R.O., Stepanov V.A., Zulkarnaev A.B. Pattern of biochemical markers of mineral and bone disorders in kidney transplant recipients: real-world data. Problems of Endocrinology. 2023;69(2):47-57. (In Russ.) https://doi.org/10.14341/probl13167

Views: 766


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)