Pattern of biochemical markers of mineral and bone disorders in kidney transplant recipients: real-world data
https://doi.org/10.14341/probl13167
Abstract
BACKGROUND: There is a lack of studies providing comprehensive data on the prevalence of mineral and bone disorders (MBD) laboratory abnormalities after kidney transplantation in Russia.
AIM: to obtain real-world data on the prevalence of the main mineral abnormalities among kidney transplant recipients and to revise their concomitant MBD therapy.
METHOD: This cross-sectional study included 236 patients with successful kidney transplantation. Their serum intact parathyroid hormone (iPTH), total calcium (Ca), phosphorus (P), and alkaline phosphatase (ALP) levels were measured.
RESULTS: Only 6.2% of our cohort had all laboratory parameters within the target range, whereas persistent HPT along with hypercalcemia was noted in almost one third of the patients (31%). Normal iPTH levels were observed in 13% cases; 84% of the patients had hyperparathyroidism. The fraction of patients with target iPTH did not differ between the groups with normal and decreased estimated glomerular filtration rate (eGFR) (p=0.118). Hypercalcemia was observed in 29% cases. The serum P level varied significantly in groups with different eGFR (p<0.0001), increasing with declining graft function. Furthermore, 40.7% of patients had ALP above the target range. While 123 patients received active vitamin D (alfacalcidol), 33 received monotherapy with inactive vitamin D (cholecalciferol). The control group consisted of 57 medication-naïve patients. The serum total Ca level varied significantly between the groups (p=0.0006), being higher in patients supplemented with cholecalciferol. The fraction of patients with normocalcemia was lowest in the cholecalciferol group (chi-square, р=0.0018).
CONCLUSION: The prevalence of biochemical abnormalities after kidney transplantation is high. Alfacalcidol usage may be safer than using cholecalciferol to prevent hypercalcemia development.
About the Authors
A. V. VatazinRussian Federation
Andrey V. Vatazin - MD, PhD, Professor.
Moscow
Competing Interests:
none
E. V. Parshina
Russian Federation
Ekaterina V. Parshina - MD.
7/9, Universitetskaya emb., 109103, Saint-Petersburg
Competing Interests:
none
R. O. Kantaria
Russian Federation
Rusudana O. Kantaria - MD, PhD.
Competing Interests:
none
V. A. Stepanov
Russian Federation
Vadim A. Stepanov - MD, PhD.
Competing Interests:
none
A. B. Zulkarnaev
Russian Federation
Alexey B. Zulkarnaev - MD, PhD, Assistant Professor.
Competing Interests:
none
References
1. Andrusev AM, Tomilina NA, Peregudova NG, Shinkarev MB. Renal replacement therapy of terminal chronic renal failure in the Russian Federation 2014–2018. Report on the data of the All-Russian Register of renal replacement therapy of the Russian Dialysis Society. Nephrology and dialysis. 2020;22(1):1-71. (In Russ.). doi: https://doi.org/10.28996/2618-9801-2020-1suppl-1-71
2. Wolfe RA, Ashby VB, Milford EL, et al. Comparison of Mortality in All Patients on Dialysis, Patients on Dialysis Awaiting Transplantation, and Recipients of a First Cadaveric Transplant. N Engl J Med. 1999;341(23):1725-1730. doi: https://doi.org/10.1056/NEJM199912023412303
3. Huffer WE, Kuzela D, Popovtzer MM, Starzl TE. Metabolic bone disease in chronic renal failure. II. Renal transplant patients. Am J Pathol. 1975;78(3):385-400.
4. Nielsen HE, Christensen MS, Melsen F, Torring S. Bone disease, hypophosphatemia and hyperparathyroidism after renal transplantation. Adv Exp Med Biol. 1977;(81):603-610. doi: https://doi.org/10.1007/978-1-4613-4217-5_58
5. Bleskestad I, Bergrem H, Leivestad T, et al. Parathyroid hormone and clinical outcome in kidney transplant patients with optimal transplant function. Clin Transplant. 2014;28(4):479-486. doi: https://doi.org/10.1111/ctr.12341
6. Prakobsuk S, Sirilak S, Vipattawat K, et al. Hyperparathyroidism and increased fractional excretion of phosphate predict allograft loss in long-term kidney transplant recipients. Clin Exp Nephrol. 2016;21(5):926-931. doi: https://doi.org/10.1007/s10157-016-1370-9
7. Nielsen HE, Christensen MS, Meisen F, Tørring S. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2017;7(3):e1. doi: https://doi.org/10.1016/j.kisu.2017.10.001
8. Nephro.ru [Интернет]. Professional association: Russian public association «Russian dialysis society». National clinical guidelines on CKD-MBD. 2015. (In Russ.). Доступно по: http://www.nephro.ru/content/files/recomendations/ckdmbdNationalGuidelines.pdf. Ссылка активна на 01.03.2023.
9. Evenepoel P, Claes K, Kuypers D, et al. Natural history of parathyroid function and calcium metabolism after kidney transplantation: a single-centre study. Nephrol Dial Transplant. 2004;19(5):1281-1287. doi: https://doi.org/10.1093/ndt/gfh128
10. Nielsen HE, Christensen MS, Meisen F, Tørring S. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1-150. doi: https://doi.org/10.1038/kisup.2012.73
11. Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93(3):491-507. doi: https://doi.org/10.1093/biomet/93.3.491
12. Setterberg L, Sandberg J, Elinder C-G, Nordenstrom J. Bone demineralization after renal transplantation: contribution of secondary hyperparathyroidism manifested by hypercalcaemia. Nephrol Dial Transplant. 1996;11(9):1825-1828. doi: https://doi.org/10.1093/oxfordjournals.ndt.a027676
13. Perrin P, Caillard S, Javier R, et al. Persistent hyperparathyroidism is a major risk factor for fractures in the five years after kidney transplantation. Am J Transplant. 2013;13(10):2653-2663. doi: https://doi.org/10.1111/ajt.12425
14. Evenepoel P. Recovery versus persistence of disordered mineral metabolism in kidney transplant recipients. Semin Nephrol. 2013;33(2):191-203. doi: https://doi.org/10.1016/j.semnephrol.2012.12.019
15. Bleskestad I, Bergrem H, Leivestad T, Gøransson L. Intact parathyroid hormone levels in renal transplant patients with normal transplant function. Clin Transplant. 2011;25(5):E566-E570. doi: https://doi.org/10.1111/j.1399-0012.2011.01515.x
16. Novokshonоv KY, Karelina YV, Zemchenkov AY, et al. Chronic kidney disease mineral and bone disorder markers in screening study among dialysis patients in North-West federal region of Russia. Nefrologia. 2016;20(1):36-50. (In Russ.).
17. Lehmann G, Ott U, Stein G, et al. Renal osteodystrophy after successful renal transplantation: a histomorphometric analysis in 57 patients. Transplant Proc. 2007;39(10):3153-3158. doi: https://doi.org/10.1016/j.transproceed.2007.10.001
18. van Londen M, Aarts B, Deetman P, et al. Post-transplant hypophosphatemia and the risk of death-censored graft failure and mortality after kidney transplantation. Clin J Am Soc Nephrol. 2017;12(8):1301-1310. doi: https://doi.org/10.2215/cjn.10270916
19. Baia L, Heilberg I, Navis G, de Borst M. Phosphate and FGF-23 homeostasis after kidney transplantation. Nat Rev Nephrol. 2015;11(11):656-666. doi: https://doi.org/10.1038/nrneph.2015.153
20. Loffing J, Lötscher M, Kaissling B, et al. Renal Na/H exchanger NHE-3 and Na-PO4 cotransporter NaPi-2 protein expression in glucocorticoid excess and deficient states. J Am Soc Nephrol. 1998;9(9):1560-1567. doi: https://doi.org/10.1681/ASN.V991560
21. Borowitz SM, Granrud GS. Glucocorticoids inhibit intestinal phosphate absorption in developing rabbits. J Nutr. 1992;122(6):1273-1279. doi: https://doi.org/10.1093/jn/122.6.1273
22. Haller M, Amatschek S, Wilflingseder J, et al. Sirolimus induced phosphaturia is not caused by inhibition of renal apical sodium phosphate cotransporters. PLoS One. 2012;7(7):e39229. doi: https://doi.org/10.1371/journal.pone.0039229
23. Schwarz C, Böhmig G, Steininger R, et al. Impaired phosphate handling of renal allografts is aggravated under rapamycin‐based immunosuppression. Nephrol Dial Transplant. 2001;16(2):378-382. doi: https://doi.org/10.1093/ndt/16.2.378
24. Kempe D, Dermaku-Sopjani M, Frohlich H, et al. Rapamycin-induced phosphaturia. Nephrol Dial Transplant. 2010;25(9):2938-2944. doi: https://doi.org/10.1093/ndt/gfq172
25. Grignani G, Palmerini E, Ferraresi V, et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 2015;16(1):98-107. doi: https://doi.org/10.1016/S1470-2045(14)71136-2
26. Bouquegneau A, Salam S, Delanaye P, et al. Bone disease after kidney transplantation. Clin J Am Soc Nephrol. 2016;11(7):1282-1296. doi: https://doi.org/10.2215/cjn.11371015
27. Kanaan N, Claes K, Devogelaer J, et al. Fibroblast growth factor-23 and parathyroid hormone are associated with post-transplant bone mineral density loss. Clin J Am Soc Nephrol. 2010;5(10):1887-1892. doi: https://doi.org/10.2215/cjn.00950110
28. Evenepoel P, Claes K, Meijers B, et al. Bone mineral density, bone turnover markers, and incident fractures in de novo kidney transplant recipients. Kidney Int. 2019;95(6):1461-1470. doi: https://doi.org/10.1016/j.kint.2018.12.024
29. Jeon H, Kim Y, Park S, et al. Association of serum phosphorus concentration with mortality and graft failure among kidney transplant recipients. Clin J Am Soc Nephrol. 2017;12(4):653-662. doi: https://doi.org/10.2215/cjn.07090716
30. Nakai K, Mitsuiki K, Kuroki Y, et al. Relative hypophosphatemia early after transplantation is a predictor of good kidney graft function. Clin Exp Nephrol. 2019;23(9):1161-1168. doi: https://doi.org/10.1007/s10157-019-01756-z
31. Connolly G, Cunningham R, McNamee P, et al. Elevated serum phosphate predicts mortality in renal transplant recipients. Transplantation. 2009;87(7):1040-1044. doi: https://doi.org/10.1097/tp.0b013e31819cd122
32. Merhi B, Shireman T, Carpenter M, et al. Serum phosphorus and risk of cardiovascular disease, all-cause mortality, or graft failure in kidney transplant recipients: an ancillary study of the FAVORIT trial cohort. Am J Kidney Dis. 2017;70(3):377-385. doi: https://doi.org/10.1053/j.ajkd.2017.04.014
33. Pieper A, Buhle F, Bauer S, et al. The effect of sevelamer on the pharmacokinetics of cyclosporin A and mycophenolate mofetil after renal transplantation. Nephrol Dial Transplant. 2004;19(10):2630-2633. doi: https://doi.org/10.1093/ndt/gfh446
34. Alagoz S, Trabulus S. Long-term evaluation of mineral metabolism after kidney transplantation. Transplant Proc. 2019;51(7):2330-2333. doi: https://doi.org/10.1016/j.transproceed.2019.01.181
35. Delos Santos R, Rossi A, Coyne D, Maw T. Management of post-transplant hyperparathyroidism and bone disease. Drugs. 2019;79(5):501-513. doi: https://doi.org/10.1007/s40265-019-01074-4
36. Keyzer C, Riphagen I, Joosten M, et al. Associations of 25(OH) and 1,25(OH)2 vitamin D with long-term outcomes in stable renal transplant recipients. J Clin Endocrinol Metab. 2015;100(1):81-89. doi: https://doi.org/10.1210/jc.2014-3012
37. Messa P, Regalia A, Alfieri C. Nutritional vitamin D in renal transplant patients: speculations and reality. Nutrients. 2017;9(6):550. doi: https://doi.org/10.3390/nu9060550
38. Cianciolo G, Galassi A, Capelli I, et al. Vitamin D in kidney transplant recipients: mechanisms and therapy. Am J Nephrol. 2016;43(6):397-407. doi: https://doi.org/10.1159/000446863
Supplementary files
|
1. Figure 1. PTH levels in groups of kidney transplant recipients with different graft function. Kruskal-Wallis test, p<0.0001. Horizontal lines indicate comparisons of pairs of groups for which significant differences were obtained. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(100KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Distribution of patients with preserved and reduced AT function by category according to PTH level | |
Subject | ||
Type | Исследовательские инструменты | |
View
(140KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Serum phosphorus levels in groups of kidney transplant recipients with different graft function. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(96KB)
|
Indexing metadata ▾ |
|
4. Figure 4. A - prevalence of target values of PTH, total calcium, phosphorus and alkaline phosphatase in kidney transplant recipients. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(405KB)
|
Indexing metadata ▾ |
|
5. Figure 5. Distribution of patients receiving and not receiving MCI-CKD therapy, categorized by the level of total calcium, PTH, phosphorus and alkaline phosphatase | |
Subject | ||
Type | Исследовательские инструменты | |
View
(121KB)
|
Indexing metadata ▾ |
|
6. Figure 6. Serum total calcium levels of PT recipients in the groups receiving and not receiving MCI-CKD therapy. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(109KB)
|
Indexing metadata ▾ |
|
7. Figure 7. Distribution of patients receiving and not receiving therapy with various vitamin D preparations, categorized by the level of total calcium, PTH, phosphorus and alkaline phosphatase. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(166KB)
|
Indexing metadata ▾ |
|
8. Figure 8. eGFR values in PT recipients receiving and not receiving therapy with various vitamin D preparations. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(136KB)
|
Indexing metadata ▾ |
Review
For citations:
Vatazin A.V., Parshina E.V., Kantaria R.O., Stepanov V.A., Zulkarnaev A.B. Pattern of biochemical markers of mineral and bone disorders in kidney transplant recipients: real-world data. Problems of Endocrinology. 2023;69(2):47-57. (In Russ.) https://doi.org/10.14341/probl13167

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).