The role of antidiabetic drugs in the treatment of Alzheimer’s disease: systematic review
https://doi.org/10.14341/probl13183
Abstract
Recent studies show that Alzheimer’s disease (AD) has many common links with conditions associated with insulin resistance, including neuroinflammation, impaired insulin signaling, oxidative stress, mitochondrial dysfunction and metabolic syndrome. The authors conducted an electronic search for publications in the PubMed/MEDLINE and Google Scholar databases using the keywords “amyloid beta”, “Alzheimer type-3-diabetes”, “intranasal insulin”, “metformin”, “type 2 diabetes mellitus”, “incretins” and “PPARy agonists». A systematic literature search was conducted among studies published between 2005 and 2022. The authors used the following inclusion criteria: 1) Subjects who received therapy for AD and/or DM2, if the expected result concerned the risk of cognitive decline or the development of dementia; 2) The age of the study participants is > 50 years; 3) The type of studies included in this review were randomized clinical trials, population-based observational studies or case-control studies, prospective cohort studies, as well as reviews and meta-analyses; 4) The included articles were written in English. In recent years, there has been considerable interest in identifying the mechanisms of action of antidiabetic drugs and their potential use in AD. Human studies involving patients with mild cognitive impairment and Alzheimer’s disease have shown that the administration of certain antidiabetic drugs, such as intranasal insulin, metformin, incretins and thiazolidinediones, can improve cognitive function and memory. The purpose of this study is to evaluate the effectiveness of antidiabetic drugs in the treatment of AD. According to the results of the study, metformin, intranasal insulin, thiazolidinediones and incretins showed a positive effect both in humans and in animal models. Recent studies show that thiazolidinediones can activate pathways in the brain that are regulated by IGF-1; however, rosiglitazone may pose a significant risk of side effects. The results of clinical studies on the use of metformin in AD are limited and contradictory.
About the Authors
A. N. IshmuratovaRussian Federation
Aliya N. Ishmuratova
SPIN-код: 3354-2445
Ufa
Competing Interests:
None
M. A. Abramov
Russian Federation
Mikhail A. Abramov
SPIN-код: 2015-1254
Tula
Competing Interests:
None
K. O. Kuznetsov
Russian Federation
Kirill O. Kuznetsov
SPIN-код: 3053-3773
450008, Ufa, Lenin st., 3
Competing Interests:
None
M. V. Ivanyuta
Russian Federation
Maria V. Ivanyuta
SPIN-код: 3593-8321
Moscow
Competing Interests:
None
Z. F. Shakirova
Russian Federation
Zilara F. Shakirova
SPIN-код: 3252-1621
Ufa
Competing Interests:
None
A. I. Kitapova
Russian Federation
Albina I. Kitapova
SPIN-код: 5411-2323
Ufa
Competing Interests:
None
M. D. Usmonov
Russian Federation
Mirzosaid D. Usmonov
SPIN: 4321-2455
Ufa
Competing Interests:
None
L. M. Chernousova
Russian Federation
Liliya M. Chernousova
SPIN-код: 8221-2312
Rostov-on-Don
Competing Interests:
None
L. I. Valeeva
Russian Federation
Lyaisan I. Valeeva
SPIN-код: 3561-9351
Ufa
Competing Interests:
None
A. Yu. Kuznetsova
Russian Federation
Anastasiya Yu. Kuznetsova
SPIN-код: 9221-1342
Ufa
Competing Interests:
None
A. S. Baislamov
Russian Federation
Aitugan S. Baislamov
SPIN-код: 3231-7451
Ufa
Competing Interests:
None
A. R. Shaihetdinova
Russian Federation
Aigul R. Shaihetdinova
SPIN-код: 2213-2324
Ufa
Competing Interests:
None
A. A. Mirgaliev
Russian Federation
Aidar A. Mirgaliev
SPIN-код: 5323-1614
Ufa
Competing Interests:
None
S. T. Orozberdiev
Russian Federation
Sultan T. Orozberdiev
SPIN-код: 6221-9225
Ufa
Competing Interests:
None
K. I. Yakupova
Russian Federation
Kamila I. Yakupova
SPIN-код: 7223-1425
Ufa
Competing Interests:
None
References
1. Kicherova OA, Reikhert LI. Alzheimer’s disease. Zhurnal Nevrol i psikhiatrii im SS Korsakova. 2018;118(1):77. (In Russ.). doi: https://doi.org/10.17116/jnevro20181181177-81
2. Evsegneev RA. Alzheimer’s disease as a general medical and social problem: achievements of the last decade. Meditsinskie novosti. 2021;320(5):37-40. (In Russ.).
3. Alizade MR, Lobzin VY, Emelin AY, et al. Biomarkery amiloidoza i neyrodegeneratsii v diagnostike idiopaticheskoy normotenzivnoy gidrotsefalii i bolezni al’tsgeymera. Russian Military Medical Academy Reports. 2019;38(3):188. (In Russ.). doi: https://doi.org/10.17816/rmmar26181
4. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157(1):107843. doi: https://doi.org/10.1016/j.diabres.2019.107843
5. Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591-604. doi: https://doi.org/10.1038/s41574-018-0048-7
6. Arvanitakis Z, Wilson RS, Bienias JL, et al. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004;61(5):661-666. doi: https://doi.org/10.1001/archneur.61.5.661
7. Ott A, Stolk RP, Hofman A, et al. Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia. 1996;39(11):1392-1397. doi: https://doi.org/10.1007/s001250050588
8. Lu Y, Fülöp T, Gwee X, et al. Cardiometabolic and vascular disease factors and mild cognitive impairment and dementia. Gerontology. 2022;68(9):1061-1069. doi: https://doi.org/10.1159/000521547
9. Fernandez AM, Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci. 2012;13(4):225-239. doi: https://doi.org/10.1038/nrn3209
10. Michailidis M, Moraitou D, Tata DA, et al. Alzheimer’s disease as type 3 diabetes: common pathophysiological mechanisms between Alzheimer’s disease and type 2 diabetes. Int J Mol Sci. 2022;23(5):2687. doi: https://doi.org/10.3390/ijms23052687
11. Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer’s disease in the Middle East and its shared pathological mediators. Saudi J Biol Sci. 2020;27(2):736-750. doi: https://doi.org/10.1016/j.sjbs.2019.12.028
12. Yang JJ. Brain insulin resistance and the therapeutic value of insulin and insulin-sensitizing drugs in Alzheimer’s disease neuropathology. Acta Neurol Belg. 2022;122(5):1135-1142. doi: https://doi.org/10.1007/s13760-022-01907-2.
13. Claxton A, Baker LD, Hanson A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis. 2015;44(3):897-906. doi: https://doi.org/10.3233/JAD-141791
14. Reger MA, Watson GS, Green PS, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323-331. doi: https://doi.org/10.3233/jad-2008-13309
15. Rosenbloom M, Barclay TR, Kashyap B, et al. A phase ii, single-center, randomized, double-blind, placebo-controlled study of the safety and therapeutic efficacy of intranasal glulisine in amnestic mild cognitive impairment and probable mild Alzheimer’s disease. Drugs Aging. 2021;38(5):407-415. doi: https://doi.org/10.1007/s40266-021-00845-7
16. Zhang Y, Fan X, Su Z, et al. Pretreatment with metformin prevents microcystin-LR-induced tau hyperphosphorylation via mTOR-dependent PP2A and GSK-3β activation. Environ Toxicol. 2021;36(12):2414-2425. doi: https://doi.org/10.1002/tox.23354
17. Infante-Garcia C, Ramos-Rodriguez JJ, Hierro-Bujalance C, et al. Antidiabetic polypill improves central pathology and cognitive impairment in a mixed model of Alzheimer’s disease and type 2 diabetes. Mol Neurobiol. 2018;55(7):6130-6144. doi: https://doi.org/10.1007/s12035-017-0825-7
18. Syal C, Kosaraju J, Hamilton L, et al. Dysregulated expression of monoacylglycerol lipase is a marker for anti-diabetic drug metformin-targeted therapy to correct impaired neurogenesis and spatial memory in Alzheimer’s disease. Theranostics. 2020;10(14):6337-6360. doi: https://doi.org/10.7150/thno.44962
19. Hölscher C. The incretin hormones glucagonlike peptide 1 and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models of Alzheimer’s disease. Alzheimers Dement. 2014;10(1):47-54. doi: https://doi.org/10.1016/j.jalz.2013.12.009
20. Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain. 2005;128(6):1442-1453. doi: https://doi.org/10.1093/brain/awh452
21. Pathak NM, Pathak V, Gault VA, et al. Novel dual incretin agonist peptide with antidiabetic and neuroprotective potential. Biochem Pharmacol. 2018;155(5):264-274. doi: https://doi.org/10.1016/j.bcp.2018.07.021
22. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021;18(3):e1003583. doi: https://doi.org/10.1371/journal.pmed.1003583
23. Craft S, Baker LD, Montine TJ, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69(1):29-38. doi: https://doi.org/10.1001/archneurol.2011.233
24. Ng TP, Feng L, Yap KB, et al. Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis. 2014;41(1):61-68. doi: https://doi.org/10.3233/JAD-131901
25. Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis. 2011;24(3):485-493. doi: https://doi.org/10.3233/JAD-2011-101524
26. Koenig AM, Mechanic-Hamilton D, et al. Effects of the Insulin sensitizer metformin in Alzheimer disease: Pilot data from a randomized placebo-controlled crossover study. Alzheimer Dis Assoc Disord. 2017;31(2):107-113. doi: https://doi.org/10.1097/WAD.0000000000000202
27. Luchsinger JA, Perez T, Chang H, et al. Metformin in amnestic mild cognitive impairment: Results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis. 2016;51(2):501-514. doi: https://doi.org/10.3233/JAD-150493
28. Moore EM, Mander AG, Ames D, K et al. AIBL Investigators. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care. 2013;36(10):2981-2987. doi: https://doi.org/10.2337/dc13-0229
29. Imfeld P, Bodmer M, Jick SS, Meier CR. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J Am Geriatr Soc. 2012;60(5):916-921. doi: https://doi.org/10.1111/j.1532-5415.2012.03916.x
30. Gejl M, Gjedde A, Egefjord L, et al. In Alzheimer’s disease, 6-month treatment with glp-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci. 2016;8(5):264-274. doi: https://doi.org/10.3389/fnagi.2016.00108
31. Gold M, Alderton C, Zvartau-Hind M, et al. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement Geriatr Cogn Disord. 2010;30(2):131-146. doi: https://doi.org/10.1159/000318845
32. Watson GS, Cholerton BA, Reger MA, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry. 2005;13(11):950-958. doi: https://doi.org/10.1176/appi.ajgp.13.11.950
33. Risner ME, Saunders AM, Altman JF, et al. Rosiglitazone in Alzheimer’s disease study group. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J. 2006;6(4):246-254. doi: https://doi.org/10.1038/sj.tpj.6500369
34. Abbatecola AM, Lattanzio F, Molinari AM, et al. Rosiglitazone and cognitive stability in older individuals with type 2 diabetes and mild cognitive impairment. Diabetes Care. 2010;33(8):1706-1711. doi: https://doi.org/10.2337/dc09-2030
35. Hanyu H, Sato T, Kiuchi A, et al. Pioglitazone improved cognition in a pilot study on patients with Alzheimer’s disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc. 2009;57(1):177-179. doi: https://doi.org/10.1111/j.1532-5415.2009.02067.x
36. Sato T, Hanyu H, Hirao K, et al. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging. 2011;32(9):1626-1633. doi: https://doi.org/10.1016/j.neurobiolaging.2009.10.009
37. Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol (Lausanne). 2014;5(5):264-274. doi: https://doi.org/10.3389/fendo.2014.00161
38. Freiherr J, Hallschmid M, Frey WH 2nd, et al. Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs. 2013;27(7):505-514. doi: https://doi.org/10.1007/s40263-013-0076-8
39. Craft S, Asthana S, Newcomer JW, et al. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry. 1999;56(12):1135-1140. doi: https://doi.org/10.1001/archpsyc.56.12.1135
40. Lochhead JJ, Wolak DJ, Pizzo ME, Thorne RG. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 2015;35(3):371-381. doi: https://doi.org/10.1038/jcbfm.2014.215
41. Craft S, Claxton A, Baker LD, et al. Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: A pilot clinical trial. J Alzheimers Dis. 2017;57(4):1325-1334. doi: https://doi.org/10.3233/JAD-161256
42. Reger MA, Watson GS, Frey WH 2nd, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006;27(3):451-458. doi: https://doi.org/10.1016/j.neurobiolaging.2005.03.016
43. Craft S, Raman R, Chow TW, et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia: A randomized clinical trial. JAMA Neurol. 2020;77(9):1099-1109. doi: https://doi.org/10.1001/jamaneurol.2020.1840
44. Kuznetsov KO, Safina ER, Gaimakova DV, et al. Metformin and malignant neoplasms: a possible mechanism of antitumor action and prospects for use in practice. Problems of Endocrinology. 2022;68(5):45-55. (In Russ.). doi: https://doi.org/10.14341/probl13097
45. Wheeler S, Moore K, Forsberg CW, et al. Mortality among veterans with type 2 diabetes initiating metformin, sulfonylurea or rosiglitazone monotherapy. Diabetologia. 2013;56(9):1934-1943. doi: https://doi.org/10.1007/s00125-013-2958-1
46. Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. 2007;113(3):546-593. doi: https://doi.org/10.1016/j.pharmthera.2006.11.007
47. Markaki I, Winther K, Catrina S-B, Svenningsson P. Repurposing GLP1 agonists for neurodegenerative diseases. Frontiers in Endocrinology. 2020:(5);91-112. doi: https://doi.org/10.1016/bs.irn.2020.02.007
48. Calsolaro V, Edison P. Novel GLP-1 (Glucagon-Like Peptide-1) Analogues and insulin in the treatment for Alzheimer’s disease and other neurodegenerative diseases. CNS Drugs. 2015;29(12):1023-1039. doi: https://doi.org/10.1007/s40263-015-0301-8
49. Monti G, Gomes Moreira D, Richner M, et al. GLP-1 Receptor agonists in neurodegeneration: Neurovascular unit in the spotlight. Cells. 2022;11(13):2023. doi: https://doi.org/10.3390/cells11132023.
50. García Casares N, García Arnés JA, Gómez Huelgas R, Valdivielso Felices P, García Arias C, González Santos P. Análogos del glucagon-like peptide-1 (GLP-1): ¿una nueva estrategia de tratamiento para la enfermedad de Alzheimer? Rev Neurol. 2014;59(11):517. doi: https://doi.org/10.33588/rn.5911.2014023
51. Long-Smith CM, Manning S, McClean PL, et al. The diabetes drug liraglutide ameliorates aberrant insulin receptor localisation and signalling in parallel with decreasing both amyloid-β plaque and glial pathology in a mouse model of Alzheimer’s disease. Neuromolecular Med. 2013;15(1):102-114. doi: https://doi.org/10.1007/s12017-012-8199-5
52. Salles GN, Calió ML, Hölscher C, et al. Neuroprotective and restorative properties of the GLP-1/GIP dual agonist DA-JC1 compared with a GLP-1 single agonist in Alzheimer’s disease. Neuropharmacology. 2020;162(11):107813. doi: https://doi.org/10.1016/j.neuropharm.2019.107813
53. Han WN, Hölscher C, Yuan L, et al. Liraglutide protects against amyloid-β protein-induced impairment of spatial learning and memory in rats. Neurobiol Aging. 2013;34(2):576-588. doi: https://doi.org/10.1016/j.neurobiolaging.2012.04.009
54. Qi L, Ke L, Liu X, et al. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model. Eur J Pharmacol. 2016;783(11):23-32. doi: https://doi.org/10.1016/j.ejphar.2016.04.052
55. McClean PL, Hölscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology. 2014;76(11):57-67. doi: https://doi.org/10.1016/j.neuropharm.2013.08.005
56. Gilbert MP, Pratley RE. GLP-1 Analogs and DPP-4 Inhibitors in type 2 diabetes therapy: Review of head-to-head clinical trials. Front Endocrinol (Lausanne). 2020;11(11):57-67. doi: https://doi.org/10.3389/fendo.2020.00178
57. Kornelius E, Lin CL, Chang HH, et al. DPP-4 inhibitor linagliptin attenuates Aβ-induced cytotoxicity through activation of AMPK in neuronal cells. CNS Neurosci Ther. 2015;21(7):549-557. doi: https://doi.org/10.1111/cns.12404
58. Kosaraju J, Murthy V, Khatwal RB, et al. Vildagliptin: an anti-diabetes agent ameliorates cognitive deficits and pathology observed in streptozotocin-induced Alzheimer’s disease. J Pharm Pharmacol. 2013;65(12):1773-1784. doi: https://doi.org/10.1111/jphp.12148
59. Bomfim TR, Forny-Germano L, Sathler LB, et al.. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J Clin Invest. 2012;122(4):1339-1353. doi: https://doi.org/10.1172/JCI57256.
60. Kaur D, Behl T, Sehgal A, et al. Multifaceted Alzheimer’s disease: Building a roadmap for advancement of novel therapies. Neurochem Res. 2021;46(11):2832-2851. doi: https://doi.org/10.1007/s11064-021-03415-w
61. Geldmacher DS, Fritsch T, McClendon MJ, Landreth G. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch Neurol. 2011;68(1):45-50. doi: https://doi.org/10.1001/archneurol.2010.229
62. Chen J, Li S, Sun W, Li J. Anti-diabetes drug pioglitazone ameliorates synaptic defects in AD transgenic mice by inhibiting cyclin-dependent kinase5 activity. PLoS One. 2015;10(4):e0123864. doi: https://doi.org/10.1371/journal.pone.0123864
63. Pancani T, Phelps JT, Searcy JL, et al. Distinct modulation of voltage-gated and ligand-gated Ca2+ currents by PPAR-gamma agonists in cultured hippocampal neurons. J Neurochem. 2009;109(6):1800-1811. doi: https://doi.org/10.1111/j.1471-4159.2009.06107.x.
64. Zou C, Shi Y, Ohli J, et al. Neuroinflammation impairs adaptive structural plasticity of dendritic spines in a preclinical model of Alzheimer’s disease. Acta Neuropathol. 2016;131(2):235-246. doi: https://doi.org/10.1007/s00401-015-1527-8
65. Norwitz NG, Mota AS, Norwitz SG, Clarke K. Multi-loop model of Alzheimer disease: An integrated perspective on the Wnt/GSK3β, α-synuclein, and type 3 diabetes hypotheses. Front Aging Neurosci. 2019;11(11):57-67. doi: https://doi.org/10.3389/fnagi.2019.00184
66. Alster P, Dunalska A, Migda B, et al. The rate of decrease in brain perfusion in progressive supranuclear palsy and corticobasal syndrome may be impacted by glycemic variability — A pilot study. Front Neurol. 2021;12(11):57-67. doi: https://doi.org/10.3389/fneur.2021.767480
Supplementary files
|
1. Figure 1. Mechanism of action of metformin | |
Subject | ||
Type | Исследовательские инструменты | |
View
(153KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Mechanism of action of incretins in pancreatic β-cells | |
Subject | ||
Type | Исследовательские инструменты | |
View
(154KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Therapeutic properties of liraglutide in asthma | |
Subject | ||
Type | Исследовательские инструменты | |
View
(214KB)
|
Indexing metadata ▾ |
|
4. Figure 4. Mechanism of action of thiazolidinediones | |
Subject | ||
Type | Исследовательские инструменты | |
View
(160KB)
|
Indexing metadata ▾ |
Review
For citations:
Ishmuratova A.N., Abramov M.A., Kuznetsov K.O., Ivanyuta M.V., Shakirova Z.F., Kitapova A.I., Usmonov M.D., Chernousova L.M., Valeeva L.I., Kuznetsova A.Yu., Baislamov A.S., Shaihetdinova A.R., Mirgaliev A.A., Orozberdiev S.T., Yakupova K.I. The role of antidiabetic drugs in the treatment of Alzheimer’s disease: systematic review. Problems of Endocrinology. 2023;69(5):73-83. (In Russ.) https://doi.org/10.14341/probl13183

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).