Preview

Problems of Endocrinology

Advanced search

The role of antidiabetic drugs in the treatment of Alzheimer’s disease: systematic review

https://doi.org/10.14341/probl13183

Abstract

Recent studies show that Alzheimer’s disease (AD) has many common links with conditions associated with insulin resistance, including neuroinflammation, impaired insulin signaling, oxidative stress, mitochondrial dysfunction and metabolic syndrome. The authors conducted an electronic search for publications in the PubMed/MEDLINE and Google Scholar databases using the keywords “amyloid beta”, “Alzheimer type-3-diabetes”, “intranasal insulin”, “metformin”, “type 2 diabetes mellitus”, “incretins” and “PPARy agonists». A systematic literature search was conducted among studies published between 2005 and 2022. The authors used the following inclusion criteria: 1) Subjects who received therapy for AD and/or DM2, if the expected result concerned the risk of cognitive decline or the development of dementia; 2) The age of the study participants is > 50 years; 3) The type of studies included in this review were randomized clinical trials, population-based observational studies or case-control studies, prospective cohort studies, as well as reviews and meta-analyses; 4) The included articles were written in English. In recent years, there has been considerable interest in identifying the mechanisms of action of antidiabetic drugs and their potential use in AD. Human studies involving patients with mild cognitive impairment and Alzheimer’s disease have shown that the administration of certain antidiabetic drugs, such as intranasal insulin, metformin, incretins and thiazolidinediones, can improve cognitive function and memory. The purpose of this study is to evaluate the effectiveness of antidiabetic drugs in the treatment of AD. According to the results of the study, metformin, intranasal insulin, thiazolidinediones and incretins showed a positive effect both in humans and in animal models. Recent studies show that thiazolidinediones can activate pathways in the brain that are regulated by IGF-1; however, rosiglitazone may pose a significant risk of side effects. The results of clinical studies on the use of metformin in AD are limited and contradictory.

About the Authors

A. N. Ishmuratova
Bashkir state medical university
Russian Federation

Aliya N. Ishmuratova

SPIN-код: 3354-2445

Ufa


Competing Interests:

None



M. A. Abramov
Tula state university
Russian Federation

Mikhail A. Abramov

SPIN-код: 2015-1254

Tula


Competing Interests:

None



K. O. Kuznetsov
Bashkir state medical university
Russian Federation

Kirill O. Kuznetsov

SPIN-код: 3053-3773

450008, Ufa, Lenin st., 3


Competing Interests:

None



M. V. Ivanyuta
N.I. Pirogov National research medical university
Russian Federation

Maria V. Ivanyuta

SPIN-код: 3593-8321

Moscow


Competing Interests:

None



Z. F. Shakirova
Bashkir state medical university
Russian Federation

Zilara F. Shakirova

SPIN-код: 3252-1621

Ufa


Competing Interests:

None



A. I. Kitapova
Bashkir state medical university
Russian Federation

Albina I. Kitapova

SPIN-код: 5411-2323

Ufa


Competing Interests:

None



M. D. Usmonov
Bashkir state medical university
Russian Federation

Mirzosaid D. Usmonov

SPIN: 4321-2455

Ufa


Competing Interests:

None



L. M. Chernousova
Rostov state medical university
Russian Federation

Liliya M. Chernousova

SPIN-код: 8221-2312

Rostov-on-Don


Competing Interests:

None



L. I. Valeeva
Bashkir state medical university
Russian Federation

Lyaisan I. Valeeva

SPIN-код: 3561-9351

Ufa


Competing Interests:

None



A. Yu. Kuznetsova
Bashkir state medical university
Russian Federation

Anastasiya Yu. Kuznetsova

SPIN-код: 9221-1342

Ufa


Competing Interests:

None



A. S. Baislamov
Bashkir state medical university
Russian Federation

Aitugan S. Baislamov

SPIN-код: 3231-7451

Ufa


Competing Interests:

None



A. R. Shaihetdinova
Bashkir state medical university
Russian Federation

Aigul R. Shaihetdinova

SPIN-код: 2213-2324

Ufa


Competing Interests:

None



A. A. Mirgaliev
Bashkir state medical university
Russian Federation

Aidar A. Mirgaliev

SPIN-код: 5323-1614

Ufa


Competing Interests:

None



S. T. Orozberdiev
Bashkir state medical university
Russian Federation

Sultan T. Orozberdiev

SPIN-код: 6221-9225

Ufa


Competing Interests:

None



K. I. Yakupova
Bashkir state medical university
Russian Federation

Kamila I. Yakupova

SPIN-код: 7223-1425

Ufa


Competing Interests:

None



References

1. Kicherova OA, Reikhert LI. Alzheimer’s disease. Zhurnal Nevrol i psikhiatrii im SS Korsakova. 2018;118(1):77. (In Russ.). doi: https://doi.org/10.17116/jnevro20181181177-81

2. Evsegneev RA. Alzheimer’s disease as a general medical and social problem: achievements of the last decade. Meditsinskie novosti. 2021;320(5):37-40. (In Russ.).

3. Alizade MR, Lobzin VY, Emelin AY, et al. Biomarkery amiloidoza i neyrodegeneratsii v diagnostike idiopaticheskoy normotenzivnoy gidrotsefalii i bolezni al’tsgeymera. Russian Military Medical Academy Reports. 2019;38(3):188. (In Russ.). doi: https://doi.org/10.17816/rmmar26181

4. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157(1):107843. doi: https://doi.org/10.1016/j.diabres.2019.107843

5. Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591-604. doi: https://doi.org/10.1038/s41574-018-0048-7

6. Arvanitakis Z, Wilson RS, Bienias JL, et al. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004;61(5):661-666. doi: https://doi.org/10.1001/archneur.61.5.661

7. Ott A, Stolk RP, Hofman A, et al. Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia. 1996;39(11):1392-1397. doi: https://doi.org/10.1007/s001250050588

8. Lu Y, Fülöp T, Gwee X, et al. Cardiometabolic and vascular disease factors and mild cognitive impairment and dementia. Gerontology. 2022;68(9):1061-1069. doi: https://doi.org/10.1159/000521547

9. Fernandez AM, Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci. 2012;13(4):225-239. doi: https://doi.org/10.1038/nrn3209

10. Michailidis M, Moraitou D, Tata DA, et al. Alzheimer’s disease as type 3 diabetes: common pathophysiological mechanisms between Alzheimer’s disease and type 2 diabetes. Int J Mol Sci. 2022;23(5):2687. doi: https://doi.org/10.3390/ijms23052687

11. Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer’s disease in the Middle East and its shared pathological mediators. Saudi J Biol Sci. 2020;27(2):736-750. doi: https://doi.org/10.1016/j.sjbs.2019.12.028

12. Yang JJ. Brain insulin resistance and the therapeutic value of insulin and insulin-sensitizing drugs in Alzheimer’s disease neuropathology. Acta Neurol Belg. 2022;122(5):1135-1142. doi: https://doi.org/10.1007/s13760-022-01907-2.

13. Claxton A, Baker LD, Hanson A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis. 2015;44(3):897-906. doi: https://doi.org/10.3233/JAD-141791

14. Reger MA, Watson GS, Green PS, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323-331. doi: https://doi.org/10.3233/jad-2008-13309

15. Rosenbloom M, Barclay TR, Kashyap B, et al. A phase ii, single-center, randomized, double-blind, placebo-controlled study of the safety and therapeutic efficacy of intranasal glulisine in amnestic mild cognitive impairment and probable mild Alzheimer’s disease. Drugs Aging. 2021;38(5):407-415. doi: https://doi.org/10.1007/s40266-021-00845-7

16. Zhang Y, Fan X, Su Z, et al. Pretreatment with metformin prevents microcystin-LR-induced tau hyperphosphorylation via mTOR-dependent PP2A and GSK-3β activation. Environ Toxicol. 2021;36(12):2414-2425. doi: https://doi.org/10.1002/tox.23354

17. Infante-Garcia C, Ramos-Rodriguez JJ, Hierro-Bujalance C, et al. Antidiabetic polypill improves central pathology and cognitive impairment in a mixed model of Alzheimer’s disease and type 2 diabetes. Mol Neurobiol. 2018;55(7):6130-6144. doi: https://doi.org/10.1007/s12035-017-0825-7

18. Syal C, Kosaraju J, Hamilton L, et al. Dysregulated expression of monoacylglycerol lipase is a marker for anti-diabetic drug metformin-targeted therapy to correct impaired neurogenesis and spatial memory in Alzheimer’s disease. Theranostics. 2020;10(14):6337-6360. doi: https://doi.org/10.7150/thno.44962

19. Hölscher C. The incretin hormones glucagonlike peptide 1 and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models of Alzheimer’s disease. Alzheimers Dement. 2014;10(1):47-54. doi: https://doi.org/10.1016/j.jalz.2013.12.009

20. Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain. 2005;128(6):1442-1453. doi: https://doi.org/10.1093/brain/awh452

21. Pathak NM, Pathak V, Gault VA, et al. Novel dual incretin agonist peptide with antidiabetic and neuroprotective potential. Biochem Pharmacol. 2018;155(5):264-274. doi: https://doi.org/10.1016/j.bcp.2018.07.021

22. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021;18(3):e1003583. doi: https://doi.org/10.1371/journal.pmed.1003583

23. Craft S, Baker LD, Montine TJ, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69(1):29-38. doi: https://doi.org/10.1001/archneurol.2011.233

24. Ng TP, Feng L, Yap KB, et al. Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis. 2014;41(1):61-68. doi: https://doi.org/10.3233/JAD-131901

25. Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis. 2011;24(3):485-493. doi: https://doi.org/10.3233/JAD-2011-101524

26. Koenig AM, Mechanic-Hamilton D, et al. Effects of the Insulin sensitizer metformin in Alzheimer disease: Pilot data from a randomized placebo-controlled crossover study. Alzheimer Dis Assoc Disord. 2017;31(2):107-113. doi: https://doi.org/10.1097/WAD.0000000000000202

27. Luchsinger JA, Perez T, Chang H, et al. Metformin in amnestic mild cognitive impairment: Results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis. 2016;51(2):501-514. doi: https://doi.org/10.3233/JAD-150493

28. Moore EM, Mander AG, Ames D, K et al. AIBL Investigators. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care. 2013;36(10):2981-2987. doi: https://doi.org/10.2337/dc13-0229

29. Imfeld P, Bodmer M, Jick SS, Meier CR. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J Am Geriatr Soc. 2012;60(5):916-921. doi: https://doi.org/10.1111/j.1532-5415.2012.03916.x

30. Gejl M, Gjedde A, Egefjord L, et al. In Alzheimer’s disease, 6-month treatment with glp-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci. 2016;8(5):264-274. doi: https://doi.org/10.3389/fnagi.2016.00108

31. Gold M, Alderton C, Zvartau-Hind M, et al. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement Geriatr Cogn Disord. 2010;30(2):131-146. doi: https://doi.org/10.1159/000318845

32. Watson GS, Cholerton BA, Reger MA, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry. 2005;13(11):950-958. doi: https://doi.org/10.1176/appi.ajgp.13.11.950

33. Risner ME, Saunders AM, Altman JF, et al. Rosiglitazone in Alzheimer’s disease study group. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J. 2006;6(4):246-254. doi: https://doi.org/10.1038/sj.tpj.6500369

34. Abbatecola AM, Lattanzio F, Molinari AM, et al. Rosiglitazone and cognitive stability in older individuals with type 2 diabetes and mild cognitive impairment. Diabetes Care. 2010;33(8):1706-1711. doi: https://doi.org/10.2337/dc09-2030

35. Hanyu H, Sato T, Kiuchi A, et al. Pioglitazone improved cognition in a pilot study on patients with Alzheimer’s disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc. 2009;57(1):177-179. doi: https://doi.org/10.1111/j.1532-5415.2009.02067.x

36. Sato T, Hanyu H, Hirao K, et al. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging. 2011;32(9):1626-1633. doi: https://doi.org/10.1016/j.neurobiolaging.2009.10.009

37. Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol (Lausanne). 2014;5(5):264-274. doi: https://doi.org/10.3389/fendo.2014.00161

38. Freiherr J, Hallschmid M, Frey WH 2nd, et al. Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs. 2013;27(7):505-514. doi: https://doi.org/10.1007/s40263-013-0076-8

39. Craft S, Asthana S, Newcomer JW, et al. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry. 1999;56(12):1135-1140. doi: https://doi.org/10.1001/archpsyc.56.12.1135

40. Lochhead JJ, Wolak DJ, Pizzo ME, Thorne RG. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 2015;35(3):371-381. doi: https://doi.org/10.1038/jcbfm.2014.215

41. Craft S, Claxton A, Baker LD, et al. Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: A pilot clinical trial. J Alzheimers Dis. 2017;57(4):1325-1334. doi: https://doi.org/10.3233/JAD-161256

42. Reger MA, Watson GS, Frey WH 2nd, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006;27(3):451-458. doi: https://doi.org/10.1016/j.neurobiolaging.2005.03.016

43. Craft S, Raman R, Chow TW, et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia: A randomized clinical trial. JAMA Neurol. 2020;77(9):1099-1109. doi: https://doi.org/10.1001/jamaneurol.2020.1840

44. Kuznetsov KO, Safina ER, Gaimakova DV, et al. Metformin and malignant neoplasms: a possible mechanism of antitumor action and prospects for use in practice. Problems of Endocrinology. 2022;68(5):45-55. (In Russ.). doi: https://doi.org/10.14341/probl13097

45. Wheeler S, Moore K, Forsberg CW, et al. Mortality among veterans with type 2 diabetes initiating metformin, sulfonylurea or rosiglitazone monotherapy. Diabetologia. 2013;56(9):1934-1943. doi: https://doi.org/10.1007/s00125-013-2958-1

46. Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. 2007;113(3):546-593. doi: https://doi.org/10.1016/j.pharmthera.2006.11.007

47. Markaki I, Winther K, Catrina S-B, Svenningsson P. Repurposing GLP1 agonists for neurodegenerative diseases. Frontiers in Endocrinology. 2020:(5);91-112. doi: https://doi.org/10.1016/bs.irn.2020.02.007

48. Calsolaro V, Edison P. Novel GLP-1 (Glucagon-Like Peptide-1) Analogues and insulin in the treatment for Alzheimer’s disease and other neurodegenerative diseases. CNS Drugs. 2015;29(12):1023-1039. doi: https://doi.org/10.1007/s40263-015-0301-8

49. Monti G, Gomes Moreira D, Richner M, et al. GLP-1 Receptor agonists in neurodegeneration: Neurovascular unit in the spotlight. Cells. 2022;11(13):2023. doi: https://doi.org/10.3390/cells11132023.

50. García Casares N, García Arnés JA, Gómez Huelgas R, Valdivielso Felices P, García Arias C, González Santos P. Análogos del glucagon-like peptide-1 (GLP-1): ¿una nueva estrategia de tratamiento para la enfermedad de Alzheimer? Rev Neurol. 2014;59(11):517. doi: https://doi.org/10.33588/rn.5911.2014023

51. Long-Smith CM, Manning S, McClean PL, et al. The diabetes drug liraglutide ameliorates aberrant insulin receptor localisation and signalling in parallel with decreasing both amyloid-β plaque and glial pathology in a mouse model of Alzheimer’s disease. Neuromolecular Med. 2013;15(1):102-114. doi: https://doi.org/10.1007/s12017-012-8199-5

52. Salles GN, Calió ML, Hölscher C, et al. Neuroprotective and restorative properties of the GLP-1/GIP dual agonist DA-JC1 compared with a GLP-1 single agonist in Alzheimer’s disease. Neuropharmacology. 2020;162(11):107813. doi: https://doi.org/10.1016/j.neuropharm.2019.107813

53. Han WN, Hölscher C, Yuan L, et al. Liraglutide protects against amyloid-β protein-induced impairment of spatial learning and memory in rats. Neurobiol Aging. 2013;34(2):576-588. doi: https://doi.org/10.1016/j.neurobiolaging.2012.04.009

54. Qi L, Ke L, Liu X, et al. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model. Eur J Pharmacol. 2016;783(11):23-32. doi: https://doi.org/10.1016/j.ejphar.2016.04.052

55. McClean PL, Hölscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology. 2014;76(11):57-67. doi: https://doi.org/10.1016/j.neuropharm.2013.08.005

56. Gilbert MP, Pratley RE. GLP-1 Analogs and DPP-4 Inhibitors in type 2 diabetes therapy: Review of head-to-head clinical trials. Front Endocrinol (Lausanne). 2020;11(11):57-67. doi: https://doi.org/10.3389/fendo.2020.00178

57. Kornelius E, Lin CL, Chang HH, et al. DPP-4 inhibitor linagliptin attenuates Aβ-induced cytotoxicity through activation of AMPK in neuronal cells. CNS Neurosci Ther. 2015;21(7):549-557. doi: https://doi.org/10.1111/cns.12404

58. Kosaraju J, Murthy V, Khatwal RB, et al. Vildagliptin: an anti-diabetes agent ameliorates cognitive deficits and pathology observed in streptozotocin-induced Alzheimer’s disease. J Pharm Pharmacol. 2013;65(12):1773-1784. doi: https://doi.org/10.1111/jphp.12148

59. Bomfim TR, Forny-Germano L, Sathler LB, et al.. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J Clin Invest. 2012;122(4):1339-1353. doi: https://doi.org/10.1172/JCI57256.

60. Kaur D, Behl T, Sehgal A, et al. Multifaceted Alzheimer’s disease: Building a roadmap for advancement of novel therapies. Neurochem Res. 2021;46(11):2832-2851. doi: https://doi.org/10.1007/s11064-021-03415-w

61. Geldmacher DS, Fritsch T, McClendon MJ, Landreth G. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch Neurol. 2011;68(1):45-50. doi: https://doi.org/10.1001/archneurol.2010.229

62. Chen J, Li S, Sun W, Li J. Anti-diabetes drug pioglitazone ameliorates synaptic defects in AD transgenic mice by inhibiting cyclin-dependent kinase5 activity. PLoS One. 2015;10(4):e0123864. doi: https://doi.org/10.1371/journal.pone.0123864

63. Pancani T, Phelps JT, Searcy JL, et al. Distinct modulation of voltage-gated and ligand-gated Ca2+ currents by PPAR-gamma agonists in cultured hippocampal neurons. J Neurochem. 2009;109(6):1800-1811. doi: https://doi.org/10.1111/j.1471-4159.2009.06107.x.

64. Zou C, Shi Y, Ohli J, et al. Neuroinflammation impairs adaptive structural plasticity of dendritic spines in a preclinical model of Alzheimer’s disease. Acta Neuropathol. 2016;131(2):235-246. doi: https://doi.org/10.1007/s00401-015-1527-8

65. Norwitz NG, Mota AS, Norwitz SG, Clarke K. Multi-loop model of Alzheimer disease: An integrated perspective on the Wnt/GSK3β, α-synuclein, and type 3 diabetes hypotheses. Front Aging Neurosci. 2019;11(11):57-67. doi: https://doi.org/10.3389/fnagi.2019.00184

66. Alster P, Dunalska A, Migda B, et al. The rate of decrease in brain perfusion in progressive supranuclear palsy and corticobasal syndrome may be impacted by glycemic variability — A pilot study. Front Neurol. 2021;12(11):57-67. doi: https://doi.org/10.3389/fneur.2021.767480


Supplementary files

1. Figure 1. Mechanism of action of metformin
Subject
Type Исследовательские инструменты
View (153KB)    
Indexing metadata ▾
2. Figure 2. Mechanism of action of incretins in pancreatic β-cells
Subject
Type Исследовательские инструменты
View (154KB)    
Indexing metadata ▾
3. Figure 3. Therapeutic properties of liraglutide in asthma
Subject
Type Исследовательские инструменты
View (214KB)    
Indexing metadata ▾
4. Figure 4. Mechanism of action of thiazolidinediones
Subject
Type Исследовательские инструменты
View (160KB)    
Indexing metadata ▾

Review

For citations:


Ishmuratova A.N., Abramov M.A., Kuznetsov K.O., Ivanyuta M.V., Shakirova Z.F., Kitapova A.I., Usmonov M.D., Chernousova L.M., Valeeva L.I., Kuznetsova A.Yu., Baislamov A.S., Shaihetdinova A.R., Mirgaliev A.A., Orozberdiev S.T., Yakupova K.I. The role of antidiabetic drugs in the treatment of Alzheimer’s disease: systematic review. Problems of Endocrinology. 2023;69(5):73-83. (In Russ.) https://doi.org/10.14341/probl13183

Views: 2785


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)