Preview

Problems of Endocrinology

Advanced search

Clinical and laboratory characteristics of arginine vasopressin resistance, caused by a new homozygous mutation p.R113C in AQP2

https://doi.org/10.14341/probl13188

Abstract

Congenital nephrogenic diabetes insipidus (CNDI, arginine vasopressin resistance) is a rare inherited disorder characterized by insensitivity of the kidney to the antidiuretic effect of vasopressin. NDI is clinically characterized by polyuria with hyposthenuria and nocturia and polydipsia. In the majority of cases, about 90%, nephrogenic diabetes insipidus is an X-linked recessive disorder caused by mutations in the AVP V2 receptor gene (AVPR2). In the remaining cases, about 10%, the disease is autosomal recessive or dominant and, for these patients, mutations in the aquaporin 2 gene (AQP2) have been reported. To date, the nucleotide variants registered in AQP2 were sporadic, there is no data on the presence of «frequent» mutations and the prevalence of the disease both among the global population and among individual ethnic groups. In this paper, we describe 12 cases of arginine vasopressin resistance caused by a new homozygous mutation p.R113C in AQP2 presented among the indigenous population of the Republic of Buryatia.

About the Authors

N. A. Makretskaya
Research Centre for Medical Genetics
Russian Federation

Nina A. Makretskaya - MD, PhD.

1 Moskvorechye street, 115522 Moscow


Competing Interests:

none



U. S. Nanzanova
Children’s Republican Clinical Hospital
Russian Federation

Ulyana S. Nanzanova

Ulan-Ude


Competing Interests:

none



I. R. Hamaganova
Children’s Republican Clinical Hospital
Russian Federation

Irina R. Hamaganova

Ulan-Ude


Competing Interests:

none



E. R. Eremina
Perinatal Center of Republica; Buryat State University; Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Elena R. Eremina, - MD, PhD.

Ulan-Ude, Irkutsk


Competing Interests:

none



A. N. Tiulpakov
Research Centre for Medical Genetics
Russian Federation

Anatoliy N. Tyulpakov - MD, PhD.

Moscow


Competing Interests:

none



References

1. Arima H, Cheetham T, Christ-Crain M, et al. Changing the name of diabetes insipidus: a position statement of The Working Group for Renaming Diabetes Insipidus. Endocr Connect. 2022;11(11):549-552. doi: https://doi.org/10.1530/EC-22-0378

2. Bockenhauer D, Bichet DG. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat Rev Nephrol. 2015;11(10):576-588. doi: https://doi.org/10.1038/nrneph.2015.89

3. Fushimi K, Uchida S, Harat Y, et al. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993;361(6412):549-552. doi: https://doi.org/10.1038/361549a0

4. van den Ouweland AMW, Dreesen JCFM, Verdijk M, et al. Mutations in the vasopressin type 2 receptor gene (AVPR2) associated with nephrogenic diabetes insipidus. Nat Genet. 1992;2(2):99-102. doi: https://doi.org/10.1038/ng1092-99

5. Sands JM, Bichet DG. Nephrogenic Diabetes Insipidus. Ann Intern Med. 2006;144(3):186. doi: https://doi.org/10.7326/0003-4819-144-3-200602070-00007

6. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424. doi: https://doi.org/10.1038/gim.2015.30

7. Ryzhkova OP, Kardymon OL, Prohorchuk EB, et al. Guidelines for the interpretation of massive parallel sequencing variants (update 2018, v2). Medical genetics. 2019;18(2):3-24 (In Russ.) doi: https://doi.org/10.25557/2073-7998.2019.02.3-23

8. Collins RL, Brand H, Karczewski KJ, et al. A structural variation reference for medical and population genetics. Nature. 2020;581(7809):444-451. doi: https://doi.org/10.1038/s41586-020-2287-8

9. Sasaki S, Fushimi K, Saito H, et al. Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct. J Clin Invest. 1994;93(3):1250-1256. doi: https://doi.org/10.1172/JCI117079

10. Sasaki S, Saito H, Saito F, et al. Cloning, expression and chromosomal mapping of human collecting duct water channel (hWCH-CD). J Am Soc Nephrol. 1993;(4):858.

11. Chen L, Higgins PJ, Zhang W. Development and diseases of the collecting duct system. Results Probl Cell Differ. 2017;(60):165-203. doi: https://doi.org/10.1007/978-3-319-51436-9_7

12. Deen PMT, Verdijk MAJ, Knoers NVAM, et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science (80- ). 1994;264(5155):92-95. doi: https://doi.org/10.1126/science.8140421

13. Milano S, Carmosino M, Gerbino A, et al. Hereditary nephrogenic diabetes insipidus: pathophysiology and possible treatment. An update. Int J Mol Sci. 2017;18(11):2385. doi: https://doi.org/10.3390/ijms18112385

14. Kavanagh C, Uy NS. Nephrogenic diabetes Insipidus. Pediatr Clin North Am. 2019;66(1):227-234. doi: https://doi.org/10.1016/j.pcl.2018.09.006

15. Tyulpakov AN, Rubtsov PM, Shandin AN. Familial type of nephrogenic diabetes insipidus with partially preserved renal concentration function, which is caused by homozygous D150E mutation in the aquaporin-2 (AQP-2) gene. Problems of Endocrinology. 2007;53(5):13-18. (In Russ.). doi: https://doi.org/10.14341/probl200753513-18

16. Guyon C, Lussier Y, Bissonnette P, et al. Characterization of D150E and G196D aquaporin-2 mutations responsible for nephrogenic diabetes insipidus: importance of a mild phenotype. Am J Physiol Renal Physiol. 2009;297(2):F489-498. doi: https://doi.org/10.1152/ajprenal.90589.2008

17. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285-291. doi: https://doi.org/10.1038/nature19057

18. Tamma G, Lasorsa D, Ranieri M, et al. Integrin signaling modulates AQP2 trafficking via Arg-Gly-Asp (RGD) motif. Cell Physiol Biochem. 2011;27(6):739-748. doi: https://doi.org/10.1159/000330082


Supplementary files

1. Figure 1. Electropherogram of a fragment of the sequence of exon 1 of the AQP2 gene: a) homozygous transition c.337C>T (*) with the replacement of the codon arginine (CGC) by cysteine (TGC) at position 113 (p.R113C); b) wild-type sequence.
Subject
Type Исследовательские инструменты
View (186KB)    
Indexing metadata ▾

Review

For citations:


Makretskaya N.A., Nanzanova U.S., Hamaganova I.R., Eremina E.R., Tiulpakov A.N. Clinical and laboratory characteristics of arginine vasopressin resistance, caused by a new homozygous mutation p.R113C in AQP2. Problems of Endocrinology. 2023;69(2):75-79. (In Russ.) https://doi.org/10.14341/probl13188

Views: 798


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)