Preview

Problems of Endocrinology

Advanced search

Pituitary disorders in patients with end-stage chronic renal failure

https://doi.org/10.14341/probl13212

Abstract

Disorders in the kidneys lead to disturbance of homeostasis. As the glomerular filtration rate decreases, the metabolism of numerous biologically active substances, including pituitary hormones, decreases. The article presents an overview of pituitary dysfunction in patients with chronic kidney disease (CKD) and discusses the possible reasons of the pathogenetic mechanisms. Particular focus is being given to the assessment of changes in the concentration of pituitary hormones in patients with end-stage chronic kidney disease (CKD) and discusses the pathogenetic mechanisms of their formation. Particular attention is paid to the assessment of changes in the concentration of pituitary hormones in patients receiving renal replacement therapy (RRT). CKD leads to an increase in the level of prolactin, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Concentrations of growth hormone (GH), isulin-like growth factor-1 (IGF-1), thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH) and vasopressin may remain within normal values or increase in this group of patients. RRT does not reduce the levels of prolactin, LH, FSH, while the concentration of growth hormone, IGF-1, TSH tends to normalize. The content of ACTH and vasopressin may remain unchanged or decrease. Kidney transplantation in most cases corrects hormonal disorders. Correction of hormonal changes can improve the clinical outcome and quality of life of patients with end stage CKD.

About the Authors

T. N. Markova
Moscow State University of Medicine and Dentistry Named after A.I.Evdokimov; City Clinical Hospital №52
Russian Federation

Tatyana N. Markova - MD, PhD, Professor.

3 Pehotnaja street, 123182 Moscow


Competing Interests:

none



E. V. Kosova
Moscow State University of Medicine and Dentistry Named after A.I.Evdokimov
Russian Federation

Ekaterina V. Kosova, MD.

Moscow


Competing Interests:

none



N. K. Mishchenko
Medical Center «Med Garant»
Russian Federation

Nadezhda K. Mishchenko - PhD student, endocrinologist.

Balashikha


Competing Interests:

none



References

1. Smirnov AV, Shilov EM, Dobronravov VA, et al. National guidelines. Chronic Kidney disease: basic principles of screening, diagnosis, prevention and treatment approaches. Nephrology. 2012;16(1):89-115. (In Russ.)]. doi: https://doi.org/10.24884/1561-6274-2012-16-1-89-115

2. Hill NR, Fatoba ST, Oke JL et al. Global Prevalence of Chronic Kidney Disease — A Systematic Review and Meta-Analysis. PLoS One. 2016;11(7):e0158765. doi: https://doi.org/10.1371/journal.pone.0158765

3. Foreman KJ, Marquez N, Dolgert A, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet. 2018;392(10159):2052-2090. doi: https://doi.org/10.1016/S0140-6736(18)31694-5

4. Hronicheskaja bolezn’ pochek: uchebnoe posobie. Ed by Nikitin IG, Reznik EV, Zajvaja MV, et al. Moscow: RNIMU im.N.I.Pirogova Minzdrava Rossii; 2019 (In Russ.).

5. Niemczyk S, Niemczyk L, Romejko-Ciepielewska K. Basic endocrinological disorders in chronic renal failure. Endokrynol Pol. 2012;63(3):250-257.

6. Brinkman JE, Tariq MA, Leavitt L, et al. Physiology, Growth Hormone. [Updated 2021 May 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [cited 05.11.2011]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482141/

7. Haffner D, Grund A, Leifheit-Nestler M. Renal effects of growth hormone in health and in kidney disease. Pediatr Nephrol. 2021;36(8):2511-2530. doi: https://doi.org/10.1007/s00467-021-05097-6.

8. Mahesh S, Kaskel F. Growth hormone axis in chronic kidney disease. Pediatr Nephrol. 2008;23(1):41-48. doi: https://doi.org/10.1007/s00467-007-0527-x

9. Gurevich E, Segev Y, Landau D. Growth HORMONE and IGF1 actions in kidney development and function. Cells. 2021;10(12):3371. doi: https://doi.org/10.3390/cells10123371.

10. Ikizler TA, Cano NJ, Franch H, et al. International Society of Renal Nutrition and Metabolism. Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int. 2013;84(6):1096-1107. doi: https://doi.org/10.1038/ki.2013.147

11. Kopple JD, Cheung AK, Christiansen JS, et al. OPPORTUNITY™: a largescale randomized clinical trial of growth hormone in hemodialysis patients. Nephrol Dial Transplant. 2011;26(12):4095-4103. doi: https://doi.org/10.1093/ndt/gfr363.

12. Al-Chalabi M, Bass AN, Alsalman I. Physiology, Prolactin. [Updated 2021 Jul 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507829/

13. Edey MM. Male sexual dysfunction and chronic kidney disease. Front Med (Lausanne). 2017;(4):32. doi: https://doi.org/10.3389/fmed.2017.00032

14. Ognivenko VM. Biohimija gormonov. Uchebnoe posobie dlja samostojatel’noj raboty po biohimii studentov medicinskih vuzov. Ed by Vavilova TP. Moscow: Izd. MGMSU; 2008. (In Russ.).

15. Brin VB, Tabolova LS, Salbiev KD, et al. On the role of prolactin in regulation of water-salt metabolism. Nephrology. 2001;5(3):93-94. (In Russ.).

16. Rojas-Vega L, Reyes-Castro LA, Ramírez V, et al. Ovarian hormones and prolactin increase renal NaCl cotransporter phosphorylation. Am J Physiol Physiol. 2015;308(8):F799-F808. doi: https://doi.org/10.1152/ajprenal.00447.2014

17. Lo JC, Beck GJ, Kaysen GA, et al. Hyperprolactinemia in end‐stage renal disease and effects of frequent hemodialysis. Hemodial Int. 2017;21(2):190-196. doi: https://doi.org/10.1111/hdi.12489

18. Lo JC, Beck GJ, Kaysen GA, et al. FHN Study. Hyperprolactinemia in end-stage renal disease and effects of frequent hemodialysis. Hemodial Int. 2017;21(2):190-196. doi: https://doi.org/10.1111/hdi.12489

19. Sievertsen GD, Lim VS, Nakawatase C, Frohman LA. Metabolic clearance and secretion rates of human prolactin in normal subjects and in patients with chronic renal failure*. J Clin Endocrinol Metab. 1980;50(5):846-852. doi: https://doi.org/10.1210/jcem-50-5-846

20. Adachi N, Lei B, Deshpande G, et al. Uraemia suppresses central dopaminergic metabolism and impairs motor activity in rats. Intensive Care Med. 2001;27(10):1655-1660. doi: https://doi.org/10.1007/s001340101067

21. Kovacs CS, Chik CL. Hyperprolactinemia caused by lactation and pituitary adenomas is associated with altered serum calcium, phosphate, parathyroid hormone (PTH), and PTH-related peptide levels. J Clin Endocrinol Metab. 1995;80(10):3036-3042. doi: https://doi.org/10.1210/jcem.80.10.7559893

22. Dourado M, Cavalcanti F, Vilar L, Cantilino A. Relationship between prolactin, chronic kidney disease, and cardiovascular risk. Int J Endocrinol. 2020;2020(10):1-6. doi: https://doi.org/10.1155/2020/9524839

23. Carrero JJ, Kyriazis J, Sonmez A, et al. Prolactin levels, endothelial dysfunction, and the risk of cardiovascular events and mortality in patients with CKD. Clin J Am Soc Nephrol. 2012;7(2):207-15. doi: https://doi.org/10.2215/CJN.06840711

24. Markova TN, Kosova EV, Sinyavkin DO, et al. The role of dialysis in the formation of hyperprolactinemia. In: Collection of abstracts of the XVIII (XXVI) National Congress of Endocrinologists with international participation «Personalized medicine and practical healthcare». Moscow: UP Print; 2019. P. 364-365. (In Russ.).

25. Kumar R, Jhorawat R, Mathur M, et al. Effect of renal transplantation on multiple hormone levels in patients of chronic kidney disease: A single center study. Indian J Transplant. 2014;8(3):75-79. doi: https://doi.org/10.1016/j.ijt.2014.08.002

26. Nedresky D, Singh G. Physiology, Luteinizing Hormone. [Updated 2021 Sep 28]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [cited 06.11.2023]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539692/

27. Orlowski M, Sarao MS. Physiology, Follicle Stimulating Hormone. [Updated 2022 May 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [cited 06.11.2023]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK535442/

28. Kuczera P, Adamczak M, Wiecek A. Endocrine abnormalities in patients with chronic kidney disease. PRILOZI. 2015;36(2):109-118. doi: https://doi.org/10.1515/prilozi-2015-0059

29. Schmidt A, Luger A, Hörl WH. Sexual hormone abnormalities in male patients with renal failure. Nephrol Dial Transplant. 2002;17(3):368-371. doi: https://doi.org/10.1093/ndt/17.3.368

30. Edey MM. Male sexual dysfunction and chronic kidney disease. Front Med. 2017;4(3):368-371. doi: https://doi.org/10.3389/fmed.2017.00032

31. Salvadori M, Tsalouchos A. Fertility and pregnancy in end stage kidney failure patients and after renal transplantation: An update. Transplantology. 2021;2(2):92-108. doi: https://doi.org/10.3390/transplantology2020010

32. Farahmand M, Ramezani Tehrani F, et al. Endogenous estrogen exposure and chronic kidney disease; a 15-year prospective cohort study. BMC Endocr Disord. 2021;21(1):155. doi: https://doi.org/10.1186/s12902-021-00817-3

33. Ma HY, Chen S, Du Y. Estrogen and estrogen receptors in kidney diseases. Ren Fail. 2021;43(1):619-642. doi: https://doi.org/10.1080/0886022X.2021.1901739.

34. Filler G, Ramsaroop A, Stein R, et al. Is Testosterone Detrimental to Renal Function? Kidney Int Rep. 2016;1(4):306-310. doi: https://doi.org/10.1016/j.ekir.2016.07.004.

35. Doublier S, Lupia E, Catanuto P. Testosterone and 17beta-estradiol have opposite effects on podocyte apoptosis that precedes glomerulosclerosis in female estrogen receptor knockout mice. Kidney Int. 2011;79:404–413. doi: https://doi.org/10.1038/ki.2010.398.

36. Lu Y, Fu Y, Ge Y, et al. The vasodilatory effect of testosterone on renal afferent arterioles. Gend Med. 2012;9(2):103-111. doi: https://doi.org/10.1016/j.genm.2012.02.003

37. Filler G, Ramsaroop A, Stein R et al. Is testosterone detrimental to renal function? Kidney Int Rep. 2016;1(4):306-310. doi: https://doi.org/10.1016/j.ekir.2016.07.004.

38. Sikora-Grabka E, Adamczak M, Kuczera P et al. Serum sex hormones concentrations in young women in the early period after successful kidney transplantation. Endokrynologia Polska. 2018;69(2):150-155. doi: https://doi.org/10.5603/EP.2018.0019x

39. Reinhardt W, Kübber H, Dolff S, et al. Rapid recovery of hypogonadism in male patients with end stage renal disease after renal transplantation. Endocrine. 2018;60(1):159-166. doi: https://doi.org/10.1007/s12020-018-1543-2

40. Ząbczyńska M, Kozłowska K, Pocheć E. Glycosylation in the thyroid gland: Vital aspects of glycoprotein function in thyrocyte physiology and thyroid disorders. Int J Mol Sci. 2018;19(9):2792. doi: https://doi.org/10.3390/ijms19092792.

41. Mohamedali M, Reddy Maddika S, Vyas A, et al. Thyroid disorders and chronic kidney disease. Int J Nephrol. 2014;2014(1):1-6. doi: https://doi.org/10.1155/2014/520281

42. Schairer B, Jungreithmayr V, Schuster M et al. Effect of Thyroid Hormones on Kidney Function in Patients after Kidney Transplantation. Sci Rep. 2020;10(1):2156. doi: https://doi.org/10.1038/s41598-020-59178-x.

43. Basu G, Mohapatra A. Interactions between thyroid disorders and kidney disease. Indian J Endocrinol Metab. 2012;16(2):204-213. doi: https://doi.org/10.4103/2230-8210.93737

44. Rhee CM. Thyroid disease in end-stage renal disease. Curr Opin Nephrol Hypertens. 2019;28(6):621-630. doi: https://doi.org/10.1097/MNH.0000000000000542

45. Carrero JJ, Qureshi AR, Axelsson J, et al. Clinical and biochemical implications of low thyroid hormone levels (total and free forms) in euthyroid patients with chronic kidney disease. J Intern Med. 2007;262(6):690-701. doi: https://doi.org/10.1111/j.1365-2796.2007.01865.x

46. Ozen KP, Asci G, Gungor O, et al. Nutritional state alters the association between free triiodothyronine levels and mortality in hemodialysis patients. Am J Nephrol. 2011;33(4):305-312. doi: https://doi.org/10.1159/000324883

47. Fernández-Reyes MJ, Diez JJ, Collado A, et al. Are low concentrations of serum triiodothyronine a good marker for long-term mortality in hemodialysis patients? Clin Nephrol. 2010;73(03):238-240. doi: https://doi.org/10.5414/CNP73238

48. Chonchol M, Lippi G, Salvagno G, et al. Prevalence of subclinical hypothyroidism in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2008;3(5):1296-1300. doi: https://doi.org/10.2215/CJN.00800208

49. Ghaddhab C, Vuissoz JM, Deladoëy J. From bioinactive ACTH to ACTH antagonist: The clinical perspective. Front Endocrinol (Lausanne). 2017;(8):17. doi: https://doi.org/10.3389/fendo.2017.00017.

50. Mangos GJ, Whitworth JA, Williamson PM et al. Glucocorticoids and the kidney. Nephrology (Carlton). 2003;8(6):267-273. doi: https://doi.org/10.1111/j.1440-1797.2003.00215.x

51. Bomback AS, Radhakrishnan J. Treatment of nephrotic syndrome with adrenocorticotropic hormone (ACTH). Discov Med. 2011;12(63):91-96.

52. Gracia-Iguacel C, González-Parra E, Egido J, et al. Cortisol levels are associated with mortality risk in hemodialysis patients. Clin Nephrol. 2014;82(4):247-256. doi: https://doi.org/10.5414/cn108311

53. Anwar S, Larson DS, Naimi N, et al. A case report of adrenocorticotropic hormone to treat recurrent focal segmental glomerular sclerosis post-transplantation and biomarker monitoring. Front Med. 2015;(2). doi: https://doi.org/10.3389/fmed.2015.00013

54. Glavaš M, Gitlin-Domagalska A, Dębowski D, et al. Vasopressin and its analogues: from natural hormones to multitasking peptides. Int J Mol Sci. 2022;23(6):3068. doi: https://doi.org/10.3390/ijms23063068

55. Meijer E, Boertien WE, Zietse R, et al. Potential deleterious effects of vasopressin in chronic kidney disease and particularly autosomal dominant polycystic kidney disease. Kidney Blood Press Res. 2011;34(4):235-244. doi: https://doi.org/10.1159/000326902

56. Meijer E, Bakker SJ, Halbesma N, et al. Copeptin, a surrogate marker of vasopressin, is associated with microalbuminuria in a large population cohort. Kidney Int. 2010;77(1):29-36. doi: https://doi.org/10.1038/ki.2009.397

57. Roussel R, Matallah N, Bouby N, et al. Plasma copeptin and decline in renal function in a cohort from the community: The prospective D.E.S.I.R. study. Am J Nephrol. 2015;42(2):107-114. doi: https://doi.org/10.1159/000439061

58. Rho M, Perazella MA, Parikh CR,et al. Serum vasopressin response in patients with intradialytic hypotension: a pilot study. Clin J Am Soc Nephrol. 2008;3(3):729-735. doi: https://doi.org/10.2215/CJN.05341107

59. Meijer E, Bakker SJ, de Jong PE, et al. Copeptin, a surrogate marker of vasopressin, is associated with accelerated renal function decline in renal transplant recipients. Transplantation. 2009;88(4):561-567. doi: https://doi.org/10.1097/TP.0b013e3181b11ae4


Supplementary files

1. Figure 1. Effects of GH and IGF-1 on the kidneys [adapted from 7].
Subject
Type Исследовательские инструменты
View (234KB)    
Indexing metadata ▾
2. Figure 2. Hypothalamic-pituitary-gonadal axis in ESKD [adapted from 31].
Subject
Type Исследовательские инструменты
View (181KB)    
Indexing metadata ▾
3. Figure 3. Hypothalamic-pituitary-thyroid axis in ESKD [adapted from 41].
Subject
Type Research Instrument
View (306KB)    
Indexing metadata ▾

Review

For citations:


Markova T.N., Kosova E.V., Mishchenko N.K. Pituitary disorders in patients with end-stage chronic renal failure. Problems of Endocrinology. 2023;69(6):37-46. (In Russ.) https://doi.org/10.14341/probl13212

Views: 2800


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)