Preview

Problems of Endocrinology

Advanced search

Gonadotropin-dependent precocious puberty: genetic and clinical characteristics

https://doi.org/10.14341/probl13215

Abstract

BACKGROUND: In 90% cases of girls and 25–60% cases of boys the cause of gonadotropin-dependent precocious puberty (PP) is unclear. Up to 25–27.5% of gonadotropin-dependent PP cases are monogenic and suggest autosomal-dominant inheritance with incomplete sex-dependent penetrance. To date, mutations in genes KISS1, KISS1R, MKRN3, DLK1 have been described as causal variants leading to precocious hypothalamic-pituitary axis activation in childhood. Genetic testing in patients with hereditary forms of PP can expand our knowledge of underlying molecular mechanisms of the disease and it  is also necessary for genetic counselling.

AIM: To study clinical features and genetic characteristics of patients with idiopathic gonadotropin-dependent precocious puberty.

MATERIALS AND METHODS: A group of patients with idiopathic gonadotropin-dependent precocious puberty and positive family history (early or precocious puberty) was examined. Laboratory and instrumental diagnostic tests, full-exome sequencing (NGS, next-generation sequencing) were provided for all patients.

RESULTS: The study included 30 patients (29 girls, 1 boy) with idiopathic gonadotropin-dependent precocious puberty. The median of patients age at the time of the examination was 7,2 years [6,5; 7,7]. Positive family history presented in all cases: in 40% of patients on father’s side, in 37% — on mother’s side, in 23% of patients PP was diagnosed in siblings. The fullexome sequencing was conducted to 21 patients: in 61,9% of cases (95% CI [40;79]) nucleotide variants were identified   in genes, associated with gonadotropin-dependent precocious puberty. MKRN3 gene defect was detected in most cases (77% cases (95% CI [49; 92]), which consistent with international data on its highest prevalence in the monogenic forms of PP. In 23% of cases (95% CI [7; 50]) nucleotide variants were identified in other candidate genes associated with neuroontogenesis and neuroendocrine regulation mechanisms of hypothalamic-pituitary axis.

CONCLUSION: Our study confirms that detailed family history data in children with PP provides a rational approach to molecular-genetic testing. Data of inheritance pattern and clinical manifestations will simplify the diagnosis of hereditary forms of disease and enhance genetic counselling of families, followed by timely examination and administration of pathogenetic therapy.

About the Authors

D. A. Khabibullina
Endocrinology Research Center
Russian Federation

Dina A. Khabibullina - MD

11 Dm. Ulyanova street, 117036 Moscow


Competing Interests:

none



A. A. Kolodkina
Endocrinology Research Center
Russian Federation

Anna A. Kolodkina - MD, PhD

Moscow


Competing Interests:

none



T. V. Vizerov
Endocrinology Research Center
Russian Federation

Timofei V. Vizerov - MD

Moscow


Competing Interests:

none



N. A. Zubkova
Endocrinology Research Center
Russian Federation

Natalia A. Zubkova - MD, PhD

Moscow


Competing Interests:

none



O. B. Bezlepkina
Endocrinology Research Center
Russian Federation

Olga B. Bezleрkina – MD

Moscow


Competing Interests:

none



References

1. Prezhdevremennoe polovoe razvitie: Klinicheskie rekomendacii. Ed by VA Peterkova, OB Bezlepkina, MA Kareva, et al. Rossijskaja associacija jendokrinologov. Moscow: Rossijskaja associacija jendokrinologov, Ministerstvo zdravoohranenija Rossijskoj Federacii; 2021. 71 p. (In Russ.).

2. Peterkova VA, Alimova IL, Bashnina EB, et al. Clinical guidelines «Precocious puberty». Problems of Endocrinology. 2021;67(5):84-103. (In Russ.). doi: https://doi.org/10.14341/probl12821

3. Dedov II, Peterkova VA. Spravochnik detskogo endokrinologa. Moscow: Litterra; 2020. P. 91-103. (In Russ.).

4. Dedov II, Peterkova VA. Rukovodstvo po detskoi endokrinologii. Moscow: Universum pablishing; 2006. (In Russ.).

5. Partsch C-J. Pathogenesis and epidemiology of precocious puberty. Effects of exogenous oestrogens. Hum Reprod Update. 2001;7(3):292-302. doi: https://doi.org/10.1093/humupd/7.3.292

6. Cheuiche AV, da Silveira LG, de Paula LCP, et al. Diagnosis and management of precocious sexual maturation: an updated review. Eur J Pediatr. 2021;180(10):3073-3087. doi: https://doi.org/10.1007/s00431-021-04022-1

7. Maione L, Bouvattier C, Kaiser UB. Central precocious puberty: Recent advances in understanding the aetiology and in the clinical approach. Clin Endocrinol (Oxf). 2021;95(4):542-555. doi: https://doi.org/10.1111/cen.14475

8. Roberts SA, Kaiser UB. Genetics in endocrinology: Genetic etiologies of central precocious puberty and the role of imprinted genes. Eur J Endocrinol. 2020;183(4):R107-R117. doi: https://doi.org/10.1530/EJE-20-0103

9. Shim YS, Lee HS, Hwang JS. Genetic factors in precocious puberty. Clin Exp Pediatr. 2022;65(4):172-181. doi: https://doi.org/10.3345/cep.2021.00521

10. Mancini A, Magnotto JC, Abreu AP. Genetics of pubertal timing. Best Pract Res Clin Endocrinol Metab. 2022;36(1):101618. doi: https://doi.org/10.1016/j.beem.2022.101618

11. Abreu AP, Dauber A, Macedo DB, et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med. 2013;368(26):2467-2475. doi: https://doi.org/10.1056/NEJMoa1302160

12. Teles MG, Bianco SDC, Brito VN, et al. A GPR54 -Activating Mutation in a Patient with Central Precocious Puberty. N Engl J Med. 2008;358(7):709-715. doi: https://doi.org/10.1056/NEJMoa073443

13. Silveira LG, Noel SD, Silveira-Neto AP, et al. Mutations of the KISS1 Gene in Disorders of Puberty. J Clin Endocrinol Metab. 2010;95(5):2276-2280. doi: https://doi.org/10.1210/jc.2009-2421

14. Dauber A, Cunha-Silva M, Macedo DB, et al. Paternally inherited DLK1 deletion Associated With Familial Central Precocious Puberty. J Clin Endocrinol Metab. 2017;102(5):1557-1567. doi: https://doi.org/10.1210/jc.2016-3677

15. Bianco SDC, Vandepas L, Correa-Medina M, et al. KISS1R intracellular trafficking and degradation: Effect of the Arg386Pro Disease-Associated Mutation. Endocrinology. 2011;152(4):1616-1626. doi: https://doi.org/10.1210/en.2010-0903

16. Valadares LP, Meireles CG, De Toledo IP, et al. MKRN3 mutations in central precocious puberty: A systematic review and meta-analysis. J Endocr Soc. 2019;3(5):979-995. doi: https://doi.org/10.1210/js.2019-00041

17. Aycan Z, Savaş-Erdeve Ş, Çetinkaya S, et al. Investigation of MKRN3 mutation in patients with familial central precocious puberty. J Clin Res Pediatr Endocrinol. 2018;10(3):223-229. doi: https://doi.org/10.4274/jcrpe.5506

18. Bessa DS, Macedo DB, Brito VN, et al. High frequency of MKRN3 mutations in male central precocious puberty previously classified as idiopathic. Neuroendocrinology. 2017;105(1):17-25. doi: https://doi.org/10.1159/000446963

19. Abreu AP, Toro CA, Song YB, et al. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J Clin Invest. 2020;130(8):4486-4500. doi: https://doi.org/10.1172/JCI136564.

20. Zubkova NA, Kolodkina AA, Makretskaya NA, et al. Clinical and molecular genetic features of 3 family cases of the central precocious puberty, due to MKRN3 gene defects. Problems of Endocrinology. 2021;67(3):55-61. (In Russ.). doi: https://doi.org/10.14341/probl12745

21. Grandone A, Cirillo G, Sasso M, et al. MKRN3 levels in girls with central precocious puberty and correlation with sexual hormone levels: a pilot study. Endocrine. 2018;59(1):203-208. doi: https://doi.org/10.1007/s12020-017-1281-x

22. Simon D, Ba I, Mekhail N, et al. Mutations in the maternally imprinted gene MKRN3 are common in familial central precocious puberty. Eur J Endocrinol. 2016;174(1):1-8. doi: https://doi.org/10.1530/EJE-15-0488

23. Zhu J, Kusa TO, Chan Y-M. Genetics of pubertal timing. Curr Opin Pediatr. 2018;30(4):532-540. doi: https://doi.org/10.1097/MOP.0000000000000642

24. Yoo J-H. Effects of early menarche on physical and psychosocial health problems in adolescent girls and adult women. Korean J Pediatr. 2016;59(9):355-361. doi: https://doi.org/10.3345/kjp.2016.59.9.355

25. Dedov II, Semicheva TV, Peterkova VA. Polovoe razvitie detej: norma i patologija. Moscow: Kolor It Studio; 2002. (In Russ.).

26. Seraphim CE, Canton APM, Montenegro L, et al. Genotype–phenotype correlations in central precocious puberty caused by MKRN3 mutations. J Clin Endocrinol Metab. 2021;106(4):e1041-e1050. doi: https://doi.org/10.1210/clinem/dgaa955

27. Ramos C de O, Macedo DB, Canton APM, et al. Outcomes of patients with central precocious puberty due to loss-of-function mutations in the MKRN3 gene after treatment with gonadotropin-releasing hormone analog. Neuroendocrinology. 2020;110(7-8):705-713. doi: https://doi.org/10.1159/000504446

28. Dimitrova-Mladenova MS, Stefanova EM, Glushkova M, et al. Males with paternally inherited MKRN3 mutations may be asymptomatic. J Pediatr. 2016;(179):263-265. doi: https://doi.org/10.1016/j.jpeds.2016.08.065

29. Christoforidis A, Skordis N, Fanis P, et al. A novel MKRN3 nonsense mutation causing familial central precocious puberty. Endocrine. 2017;56(2):446-449. doi: https://doi.org/10.1007/s12020-017-1232-6

30. Iwasawa S, Yanagi K, Kikuchi A, et al. Recurrent de novo MAPK8IP3 variants cause neurological phenotypes. Ann Neurol. 2019;85(6):927-933. doi: https://doi.org/10.1002/ana.25481

31. Dasen JS, O’Connell SM, Flynn SE, et al. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient–induced determination of pituitary cell types. Cell. 1999;97(5):587-598. doi: https://doi.org/10.1016/S0092-8674(00)80770-9

32. Gordon DF, Lewis SR, Haugen BR, et al. Pit-1 and GATA-2 Interact and Functionally Cooperate to Activate the Thyrotropin β-Subunit Promoter. J Biol Chem. 1997;272(39):24339-24347. doi: https://doi.org/10.1074/jbc.272.39.24339

33. Baş F, Abalı ZY, Toksoy G, et al. Precocious or early puberty in patients with combined pituitary hormone deficiency due to POU1F1 gene mutation: case report and review of possible mechanisms. Hormones. 2018;17(4):581-588. doi: https://doi.org/10.1007/s42000-018-0079-4

34. Leon S, Velasco I, Vázquez MJ, et al. Sex-Biased Physiological Roles of NPFF1R, the Canonical Receptor of RFRP-3, in Food Intake and Metabolic Homeostasis Revealed by its Congenital Ablation in mice. Metabolism. 2018;(87):87-97. doi: https://doi.org/10.1016/j.metabol.2018.07.003

35. Ducret E, Anderson GM, Herbison AE. RFamide-Related Peptide-3, a mammalian gonadotropin-inhibitory hormone ortholog, regulates gonadotropin-releasing hormone neuron firing in the mouse. Endocrinology. 2009;150(6):2799-2804. doi: https://doi.org/10.1210/en.2008-1623

36. Wu M, Dumalska I, Morozova E, et al. Gonadotropin inhibitory hormone inhibits basal forebrain vGluT2-gonadotropin-releasing hormone neurons via a direct postsynaptic mechanism. J Physiol. 2009;587(7):1401-1411. doi: https://doi.org/10.1113/jphysiol.2008.166447

37. He Y, Sun W, Yu J. Is precocious puberty linked to hypothalamic expression of arginine-phenylalanine-amide-related peptide? Iran J Basic Med Sci. 2017;20(10):1074-1078. doi: https://doi.org/10.22038/IJBMS.2017.9397


Supplementary files

Review

For citations:


Khabibullina D.A., Kolodkina A.A., Vizerov T.V., Zubkova N.A., Bezlepkina O.B. Gonadotropin-dependent precocious puberty: genetic and clinical characteristics. Problems of Endocrinology. 2023;69(2):58-66. (In Russ.) https://doi.org/10.14341/probl13215

Views: 1453


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)