Evolution of insulin therapy: past, present, future
https://doi.org/10.14341/probl13251
Abstract
2021 marks the 100th anniversary of the discovery of insulin, an event that forever changed the lives of people with diabetes mellitus. At present patients around the world experience the miracle of insulin therapy every day. A disease that used to kill children and teenagers in 2 years in 1920 has become a disease that can be controlled with a possibility to lead a long productive life. Over the past century, the great discovery of Banting, Best and Collip has forever changed the world and saved millions of lives. This review is devoted to the history of the development of insulin and its further improvement: from the moment of discovery to the present days. Various generations of insulin are considered: from animals to modern ultrashort and basal analogues. The article ends with a brief review of current trends in the development of new delivery methods and the development of new insulin molecules. Over the past century, insulin therapy has come a long way, which has significantly improved the quality of life of our patients. But research is actively continuing, including in the field of alternative methods of insulin delivery, which are more convenient for the patient, as well as in the development of «smart» molecules that will have a glucose-dependent effect.
About the Authors
D. V. KurkinRussian Federation
Denis V. Kurkin - doctor of pharmacy, ass. Professor.
Moscow
Competing Interests:
none
D. A. Bakulin
Russian Federation
Dmitry A. Bakulin - PhD in medicine.
Competing Interests:
none
A. I. Robertus
Russian Federation
Aleksandra I. Robertus - PhD in biology.
Moscow
Competing Interests:
none
Yu. A. Kolosov
Russian Federation
Yurii A. Kolosov - PhD in medicine, ass. Professor.
Moscow
Competing Interests:
none
I. S. Krysanov
Russian Federation
Ivan S. Krysanov - PhD in pharmacy, ass. Professor.
Moscow
Competing Interests:
none
E. I. Morkovin
Russian Federation
Evgeny I. Morkovin - PhD in medicine.
Moscow
Competing Interests:
none
A. V. Strygin
Russian Federation
Andrei V. Strygin - PhD in medicine.
Volgograd
Competing Interests:
none
J. V. Gorbunova
Russian Federation
Julia V. Gorbunova - PhD in pharmacy.
Moscow
Competing Interests:
none
I. E. Makarenko
Russian Federation
Igor E. Makarenko - PhD in medicine.
Competing Interests:
none
R. V. Drai
Russian Federation
Roman V. Drai - PhD in medicine.
Competing Interests:
none
E. V. Makarova
Spain
Ekaterina V. Makarova - PhD in medicine.
Delegatskaya str. 20/1, 127473, Moscow, Santiago de Compostela
Competing Interests:
none
E. V. Pavlova
Russian Federation
Elizaveta V. Pavlova
Competing Interests:
none
R. А. Kudrin
Russian Federation
Rodion A. Kudrin - MD, PhD, ass. Professor.
Moscow
Competing Interests:
none
O. V. Ivanova
Russian Federation
Olga V. Ivanova - PhD in pharmacy.
Moscow
Competing Interests:
none
References
1. Sorokina LA. Leonid Sobolev (1876–1919): At the cradle of insulin discovery. Diabetes mellitus. 2013;16(1):103-105. (In Russ.). doi: https://doi.org/10.14341/2072-0351-3604
2. Hegele RA, Maltman GM. Insulin’s centenary: the birth of an idea. Lancet Diabetes Endocrinol. 2020;8(12):971-977. doi: https://doi.org/10.1016/S2213-8587(20)30337-5
3. Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol. 2018;19(1):31-44. doi: https://doi.org/10.1038/nrm.2017.89
4. Fralick M, Kesselheim AS. The U.S. Insulin Crisis — Rationing a Lifesaving Medication Discovered in the 1920s. N Engl J Med. 2019;381(19):1793-1795. doi: https://doi.org/10.1056/NEJMp1909402
5. Cefalu WT, Dawes DE, Gavlak G, et al. Insulin access and affordability working group: Conclusions and recommendations. Diabetes Care. 2018;41(6):1299-1311. doi: https://doi.org/10.2337/dci18-0019
6. Owens DR. Insulin preparations with prolonged effect. Diabetes Technol Ther. 2011;13(S1):S-5-S-14. doi: https://doi.org/10.1089/dia.2011.0068
7. FAD-approved drugs, Lilly 2021 [Internet]. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020563
8. Owens DR, Bolli GB. The continuing quest for better subcutaneously administered prandial insulins: a review of recent developments and potential clinical implications. Diabetes, Obes Metab. 2020;22(5):743-754. doi: https://doi.org/10.1111/dom.13963
9. Heise T, Linnebjerg H, Coutant D, et al. Ultra rapid lispro lowers postprandial glucose and more closely matches normal physiological glucose response compared to other rapid insulin analogues: A phase 1 randomized, crossover study. Diabetes, Obes Metab. 2020;22(10):1789-1798. doi: https://doi.org/10.1111/dom.14094
10. de la Peña A, Seger M, Soon D, et al. Bioequivalence and comparative pharmacodynamics of insulin lispro 200 U/mL relative to insulin lispro (Humalog®) 100 U/mL. Clin Pharmacol Drug Dev. 2016;5(1):69-75. doi: https://doi.org/10.1002/cpdd.221
11. Kildegaard J, Buckley ST, Nielsen RH, et al. Elucidating the mechanism of absorption of fast-acting insulin aspart: The role of niacinamide. Pharm Res. 2019;36(3):49. doi: https://doi.org/10.1007/s11095-019-2578-7
12. Heise T, Pieber TR, Danne T, et al. A pooled analysis of clinical pharmacology trials investigating the pharmacokinetic and pharmacodynamic characteristics of fast-acting insulin aspart in adults with type 1 diabetes. Clin Pharmacokinet. 2017;56(5):551-559. doi: https://doi.org/10.1007/s40262-017-0514-8
13. Pal R, Banerjee M, Bhadada SK. Glycaemic efficacy and safety of mealtime faster‐acting insulin aspart administered by injection as compared to insulin aspart in people with diabetes mellitus: A meta‐analysis of randomized controlled trials. Diabet Med. 2021;38(3):e14515. doi: https://doi.org/10.1111/dme.14515
14. Klonoff DC, Evans ML, Lane W, et al. A randomized, multicentre trial evaluating the efficacy and safety of fast‐acting insulin aspart in continuous subcutaneous insulin infusion in adults with type 1 diabetes (onset 5). Diabetes, Obes Metab. 2019;21(4):961-967. doi: https://doi.org/10.1111/dom.13610
15. Hirsch IB, Juneja R, Beals JM, et al. The Evolution of Insulin and How it Informs Therapy and Treatment Choices. Endocr Rev. 2020;41(5):733-755. doi: https://doi.org/10.1210/endrev/bnaa015
16. Melo KFS, Bahia LR, Pasinato B, et al. Short-acting insulin analogues versus regular human insulin on postprandial glucose and hypoglycemia in type 1 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2019;11(1):2. doi: https://doi.org/10.1186/s13098-018-0397-3
17. Nicolucci A, Ceriello A, Di Bartolo P, et al. Rapid-acting insulin analogues versus regular human insulin: A meta-analysis of effects on glycemic control in patients with diabetes. Diabetes Ther. 2020;11(3):573-584. doi: https://doi.org/10.1007/s13300-01900732-w
18. Danne T, Matsuhisa M, Sussebach C, et al. Lower risk of severe hypoglycaemia with insulin glargine 300 U/mL versus glargine 100 U/mL in participants with type 1 diabetes: A meta‐analysis of 6‐month phase 3 clinical trials. Diabetes, Obes Metab. 2020;22(10):1880-1885. doi: https://doi.org/10.1111/dom.14109
19. Vora J, Cariou B, Evans M, et al. Clinical use of insulin degludec. Diabetes Res Clin Pract. 2015;109(1):19-31. doi: https://doi.org/10.1016/j.diabres.2015.04.002
20. Heise T, Mathieu C. Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes. Diabetes, Obes Metab. 2017;19(1):3-12. doi: https://doi.org/10.1111/dom.12782
21. Heise T, Nørskov M, Nosek L, et al. Insulin degludec: ower day‐to‐day and within‐day variability in pharmacodynamic response compared with insulin glargine 300 U/mL in type 1 diabetes. Diabetes, Obes Metab. 2017;19(7):1032-1039. doi: https://doi.org/10.1111/dom.12938
22. Rosenstock J, Cheng A, Ritzel R, et al. More similarities than differences testing insulin glargine 300 Units/mL versus insulin degludec 100 Units/mL in insulin-naive type 2 diabetes: the randomized head-to-head BRIGHT trial. Diabetes Care. 2018;41(10):2147-2154. doi: https://doi.org/10.2337/dc18-0559
23. Philis-Tsimikas A, Klonoff DC, Khunti K, et al. Risk of hypoglycaemia with insulin degludec versus insulin glargine U300 in insulintreated patients with type 2 diabetes: the randomised, headto-head CONCLUDE trial. Diabetologia. 2020;63(4):698-710. doi: https://doi.org/10.1007/s00125-019-05080-9
24. Kjeldsen TB, Hubálek F, Hjørringgaard CU, et al. Molecular Engineering of Insulin Icodec, the First Acylated Insulin Analog for Once-Weekly Administration in Humans. J Med Chem. 2021;64(13):8942-8950. doi: https://doi.org/10.1021/acs.jmedchem.1c00257
25. Nishimura E, Pridal L, Glendorf T, et al. Molecular and pharmacological characterization of insulin icodec: a new basal insulin analog designed for once-weekly dosing. BMJ Open Diabetes Res Care. 2021;9(1):e002301. doi: https://doi.org/10.1136/bmjdrc-2021-002301
26. Rosenstock J, Bajaj HS, Janež A, et al. Once-weekly insulin for type 2 diabetes without previous insulin treatment. N Engl J Med. 2020;383(22):2107-2116. doi: https://doi.org/10.1056/NEJMoa2022474
27. Kazda CM, Chien J, Zhang Q, et al. 192-OR: Glycemic control with once-weekly Basal Insulin Fc (BIF) in persons with Type 2 Diabetes Mellitus (T2DM) using Continuous Glucose Monitoring (CGM) in a phase 2 study. Diabetes. 2021;70(S1):2107-2116. doi: https://doi.org/10.2337/db21-192-OR
28. Andersen G, Meiffren G, Famulla S, et al. ADO09, a co‐formulation of the amylin analogue pramlintide and the insulin analogue A21G, lowers postprandial blood glucose versus insulin lispro in type 1 diabetes. Diabetes, Obes Metab. 2021;23(4):961-970. doi: https://doi.org/10.1111/dom.14302
29. Cernea S, Raz I. Insulin therapy: future perspectives. Am J Ther. 2020;27(1):e121-e132. doi: https://doi.org/10.1097/MJT.0000000000001076
30. McGill JB, Weiss D, Grant M, et al. Understanding inhaled Technosphere Insulin: Results of an early randomized trial in type 1 diabetes mellitus. J Diabetes. 2021;13(2):164-172. doi: https://doi.org/10.1111/1753-0407.13099
31. Seaquist ER, Blonde L, McGill JB, et al. Hypoglycaemia is reduced with use of inhaled Technosphere ® Insulin relative to insulin aspart in type 1 diabetes mellitus. Diabet Med. 2020;37(5):752-759. doi: https://doi.org/10.1111/dme.14202
32. Gedawy A, Martinez J, Al-Salami H, Dass CR. Oral insulin delivery: existing barriers and current counter-strategies. J Pharm Pharmacol. 2018;70(2):197-213. doi: https://doi.org/10.1111/jphp.12852
33. Kaur G, Arora M, Ravi Kumar MNV. Oral drug delivery technologies—a decade of developments. J Pharmacol Exp Ther. 2019;370(3):529-543. doi: https://doi.org/10.1124/jpet.118.255828
34. Brayden DJ, Hill TA, Fairlie DP, et al. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev. 2020;(157):2-36. doi: https://doi.org/10.1016/j.addr.2020.05.007
35. Eldor R, Neutel J, Homer K, Kidron M. Efficacy and safety of 28‐day treatment with oral insulin (ORMD‐0801) in patients with type 2 diabetes: A randomized, placebocontrolled trial. Diabetes, Obes Metab. 2021;23(11):2529-2538. doi: https://doi.org/10.1111/dom.14499
36. Halberg IB, Lyby K, Wassermann K, et al. Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: a randomised, double-blind, phase 2 trial. Lancet Diabetes Endocrinol. 2019;7(3):179-188. doi: https://doi.org/10.1016/S2213-8587(18)30372-3
37. Wang A, Fan W, Yang T, et al. Liver‐target and glucose‐responsive polymersomes toward mimicking endogenous insulin secretion with improved hepatic glucose utilization. Adv Funct Mater. 2020;30(13):1-15. doi: https://doi.org/10.1002/adfm.201910168
38. Abramson A, Caffarel-Salvador E, Khang M, et al. An ingestible selforienting system for oral delivery of macromolecules. Science (80-). 2019;363(6427):611-615. doi: https://doi.org/10.1126/science.aau2277
39. Klonoff D, Bode B, Cohen N, et al. Divergent hypoglycemic effects of hepatic-directed prandial insulin: A 6-month phase 2b study in type 1 diabetes. Diabetes Care. 2019;42(11):2154-2157. doi: https://doi.org/10.2337/dc19-0152
40. Iacovacci V, Tamadon I, Kauffmann EF, et al. A fully implantable device for intraperitoneal drug delivery refilled by ingestible capsules. Sci Robot. 2021;6(57). doi: https://doi.org/10.1126/scirobotics.abh3328
41. Hua S. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Front Pharmacol. 2019;(10):1328. doi: https://doi.org/10.3389/fphar.2019.01328
42. Marciello M, Rossi S, Caramella C, Remuñán-López C. Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydr Polym. 2017;(170):43-51. doi: https://doi.org/10.1016/j.carbpol.2017.04.051
43. Purohit TJ, Hanning SM, Wu Z. Advances in rectal drug delivery systems. Pharm Dev Technol. 2018;23(10):942-952. doi: https://doi.org/10.1080/10837450.2018.1484766
44. Xue J, Shi Y, Li C, et al. Methylcellulose and polyacrylate binary hydrogels used as rectal suppository to prevent type I diabetes. Colloids Surfaces B Biointerfaces. 2018;(172):37-42. doi: https://doi.org/10.1016/j.colsurfb.2018.08.021
45. Li QY, Zhang JN, Chen BZ, et al. A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Adv. 2017;7(25):15408-15415. doi: https://doi.org/10.1039/C6RA26759A
46. Yu W, Jiang G, Liu D, et al. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Mater Sci Eng C. 2017;71:725-734. doi: https://doi.org/10.1016/j.msec.2016.10.063
47. Sugumar V, Ang KP, Alshanon AF, et al. A comprehensive review of the evolution of insulin development and its delivery method. Pharmaceutics. 2022;14(7):1406. doi: https://doi.org/10.3390/pharmaceutics14071406
48. Hoeg-Jensen T. Review: glucose-sensitive insulin. Mol Metab. 2021;46:101107. doi: https://doi.org/10.1016/j.molmet.2020.101107
49. Dedov II, Shestakova MV, Vikulova OK, et al. Epidemiological characteristics of diabetes mellitus in the Russian Federation: clinical and statistical analysis according to the Federal diabetes register data of 01.01.2021. Diabetes mellitus. 2021;24(3):204-221. (In Russ.). doi: https://doi.org/10.14341/DM12759
50. Jacober SJ, Prince MJ, Beals JM, et al. Basal insulin peglispro: Overview of a novel long‐acting insulin with reduced peripheral effect resulting in a hepato‐preferential action. Diabetes, Obes Metab. 2016;18(S2):3-16. doi: https://doi.org/10.1111/dom.12744
51. Riddle MC. Lessons from peglispro: IMAGINE how to improve drug development and affordability. Diabetes Care. 2016;39(4):499-501. doi: https://doi.org/10.2337/dc15-2754
52. Mathieu C, Martens PJ, Vangoitsenhoven R. One hundred years of insulin therapy. Nat Rev Endocrinol. 2021;17(12):715-725. doi: https://doi.org/10.1038/s41574-021-00542-w
Supplementary files
|
1. Рисунок 1. Паракринные взаимодействия β-, α- и δ-клеток островков поджелудочной железы. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(624KB)
|
Indexing metadata ▾ |
|
2. Рисунок 2. Эволюция инсулинотерапии: от Лангерганса до наших дней [38]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(412KB)
|
Indexing metadata ▾ |
|
3. Рисунок 3. Структуры доступных аналогов инсулина (А) и механизм пролонгации их действия (Б). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(812KB)
|
Indexing metadata ▾ |
|
4. Рисунок 4. Альтернативные способы доставки инсулина | |
Subject | ||
Type | Исследовательские инструменты | |
View
(342KB)
|
Indexing metadata ▾ |
Review
For citations:
Kurkin D.V., Bakulin D.A., Robertus A.I., Kolosov Yu.A., Krysanov I.S., Morkovin E.I., Strygin A.V., Gorbunova J.V., Makarenko I.E., Drai R.V., Makarova E.V., Pavlova E.V., Kudrin R.А., Ivanova O.V. Evolution of insulin therapy: past, present, future. Problems of Endocrinology. 2023;69(6):86-101. (In Russ.) https://doi.org/10.14341/probl13251

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).