Preview

Problems of Endocrinology

Advanced search

Evolution of insulin therapy: past, present, future

https://doi.org/10.14341/probl13251

Abstract

2021 marks the 100th anniversary of the discovery of insulin, an event that forever changed the lives of people with diabetes mellitus. At present patients around the world experience the miracle of insulin therapy every day. A disease that used to kill children and teenagers in 2 years in 1920 has become a disease that can be controlled with a possibility to lead a long productive life. Over the past century, the great discovery of Banting, Best and Collip has forever changed the world and saved millions of lives. This review is devoted to the history of the development of insulin and its further improvement: from the moment of discovery to the present days. Various generations of insulin are considered: from animals to modern ultrashort and basal analogues. The article ends with a brief review of current trends in the development of new delivery methods and the development of new insulin molecules. Over the past century, insulin therapy has come a long way, which has significantly improved the quality of life of our patients. But research is actively continuing, including in the field of alternative methods of insulin delivery, which are more convenient for the patient, as well as in the development of «smart» molecules that will have a glucose-dependent effect.

About the Authors

D. V. Kurkin
Moscow State University of Medicine and Dentistry of A.I. Evdokimov
Russian Federation

Denis V. Kurkin - doctor of pharmacy, ass. Professor.

Moscow


Competing Interests:

none



D. A. Bakulin
Volgograd State Medical University
Russian Federation

Dmitry A. Bakulin - PhD in medicine.


Competing Interests:

none



A. I. Robertus
Moscow State University of Medicine and Dentistry of A.I. Evdokimov; Pirogov Russian National Research Medical University
Russian Federation

Aleksandra I. Robertus - PhD in biology.

Moscow


Competing Interests:

none



Yu. A. Kolosov
Moscow State University of Medicine and Dentistry of A.I. Evdokimov
Russian Federation

Yurii A. Kolosov - PhD in medicine, ass. Professor.

Moscow


Competing Interests:

none



I. S. Krysanov
Moscow State University of Medicine and Dentistry of A.I. Evdokimov
Russian Federation

Ivan S. Krysanov - PhD in pharmacy, ass. Professor.

Moscow


Competing Interests:

none



E. I. Morkovin
Moscow State University of Medicine and Dentistry of A.I. Evdokimov
Russian Federation

Evgeny I. Morkovin - PhD in medicine.

Moscow


Competing Interests:

none



A. V. Strygin
Volgograd State Medical University
Russian Federation

Andrei V. Strygin - PhD in medicine.

Volgograd


Competing Interests:

none



J. V. Gorbunova
Moscow State University of Medicine and Dentistry of A.I. Evdokimov
Russian Federation

Julia V. Gorbunova - PhD in pharmacy.

Moscow


Competing Interests:

none



I. E. Makarenko
Pharm-Holding
Russian Federation

Igor E. Makarenko - PhD in medicine.


Competing Interests:

none



R. V. Drai
Pharm-Holding
Russian Federation

Roman V. Drai - PhD in medicine.


Competing Interests:

none



E. V. Makarova
Moscow State University of Medicine and Dentistry of A.I. Evdokimov; Universidad de Santiago de Compostela
Spain

Ekaterina V. Makarova - PhD in medicine.

Delegatskaya str. 20/1, 127473, Moscow, Santiago de Compostela


Competing Interests:

none



E. V. Pavlova
Moscow State University of Medicine and Dentistry of A.I. Evdokimov
Russian Federation

Elizaveta V. Pavlova


Competing Interests:

none



R. А. Kudrin
Volgograd State Medical University
Russian Federation

Rodion A. Kudrin - MD, PhD, ass. Professor.

Moscow


Competing Interests:

none



O. V. Ivanova
Moscow State University of Medicine and Dentistry of A.I. Evdokimov
Russian Federation

Olga V. Ivanova - PhD in pharmacy.

Moscow


Competing Interests:

none



References

1. Sorokina LA. Leonid Sobolev (1876–1919): At the cradle of insulin discovery. Diabetes mellitus. 2013;16(1):103-105. (In Russ.). doi: https://doi.org/10.14341/2072-0351-3604

2. Hegele RA, Maltman GM. Insulin’s centenary: the birth of an idea. Lancet Diabetes Endocrinol. 2020;8(12):971-977. doi: https://doi.org/10.1016/S2213-8587(20)30337-5

3. Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol. 2018;19(1):31-44. doi: https://doi.org/10.1038/nrm.2017.89

4. Fralick M, Kesselheim AS. The U.S. Insulin Crisis — Rationing a Lifesaving Medication Discovered in the 1920s. N Engl J Med. 2019;381(19):1793-1795. doi: https://doi.org/10.1056/NEJMp1909402

5. Cefalu WT, Dawes DE, Gavlak G, et al. Insulin access and affordability working group: Conclusions and recommendations. Diabetes Care. 2018;41(6):1299-1311. doi: https://doi.org/10.2337/dci18-0019

6. Owens DR. Insulin preparations with prolonged effect. Diabetes Technol Ther. 2011;13(S1):S-5-S-14. doi: https://doi.org/10.1089/dia.2011.0068

7. FAD-approved drugs, Lilly 2021 [Internet]. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020563

8. Owens DR, Bolli GB. The continuing quest for better subcutaneously administered prandial insulins: a review of recent developments and potential clinical implications. Diabetes, Obes Metab. 2020;22(5):743-754. doi: https://doi.org/10.1111/dom.13963

9. Heise T, Linnebjerg H, Coutant D, et al. Ultra rapid lispro lowers postprandial glucose and more closely matches normal physiological glucose response compared to other rapid insulin analogues: A phase 1 randomized, crossover study. Diabetes, Obes Metab. 2020;22(10):1789-1798. doi: https://doi.org/10.1111/dom.14094

10. de la Peña A, Seger M, Soon D, et al. Bioequivalence and comparative pharmacodynamics of insulin lispro 200 U/mL relative to insulin lispro (Humalog®) 100 U/mL. Clin Pharmacol Drug Dev. 2016;5(1):69-75. doi: https://doi.org/10.1002/cpdd.221

11. Kildegaard J, Buckley ST, Nielsen RH, et al. Elucidating the mechanism of absorption of fast-acting insulin aspart: The role of niacinamide. Pharm Res. 2019;36(3):49. doi: https://doi.org/10.1007/s11095-019-2578-7

12. Heise T, Pieber TR, Danne T, et al. A pooled analysis of clinical pharmacology trials investigating the pharmacokinetic and pharmacodynamic characteristics of fast-acting insulin aspart in adults with type 1 diabetes. Clin Pharmacokinet. 2017;56(5):551-559. doi: https://doi.org/10.1007/s40262-017-0514-8

13. Pal R, Banerjee M, Bhadada SK. Glycaemic efficacy and safety of mealtime faster‐acting insulin aspart administered by injection as compared to insulin aspart in people with diabetes mellitus: A meta‐analysis of randomized controlled trials. Diabet Med. 2021;38(3):e14515. doi: https://doi.org/10.1111/dme.14515

14. Klonoff DC, Evans ML, Lane W, et al. A randomized, multicentre trial evaluating the efficacy and safety of fast‐acting insulin aspart in continuous subcutaneous insulin infusion in adults with type 1 diabetes (onset 5). Diabetes, Obes Metab. 2019;21(4):961-967. doi: https://doi.org/10.1111/dom.13610

15. Hirsch IB, Juneja R, Beals JM, et al. The Evolution of Insulin and How it Informs Therapy and Treatment Choices. Endocr Rev. 2020;41(5):733-755. doi: https://doi.org/10.1210/endrev/bnaa015

16. Melo KFS, Bahia LR, Pasinato B, et al. Short-acting insulin analogues versus regular human insulin on postprandial glucose and hypoglycemia in type 1 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2019;11(1):2. doi: https://doi.org/10.1186/s13098-018-0397-3

17. Nicolucci A, Ceriello A, Di Bartolo P, et al. Rapid-acting insulin analogues versus regular human insulin: A meta-analysis of effects on glycemic control in patients with diabetes. Diabetes Ther. 2020;11(3):573-584. doi: https://doi.org/10.1007/s13300-01900732-w

18. Danne T, Matsuhisa M, Sussebach C, et al. Lower risk of severe hypoglycaemia with insulin glargine 300 U/mL versus glargine 100 U/mL in participants with type 1 diabetes: A meta‐analysis of 6‐month phase 3 clinical trials. Diabetes, Obes Metab. 2020;22(10):1880-1885. doi: https://doi.org/10.1111/dom.14109

19. Vora J, Cariou B, Evans M, et al. Clinical use of insulin degludec. Diabetes Res Clin Pract. 2015;109(1):19-31. doi: https://doi.org/10.1016/j.diabres.2015.04.002

20. Heise T, Mathieu C. Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes. Diabetes, Obes Metab. 2017;19(1):3-12. doi: https://doi.org/10.1111/dom.12782

21. Heise T, Nørskov M, Nosek L, et al. Insulin degludec: ower day‐to‐day and within‐day variability in pharmacodynamic response compared with insulin glargine 300 U/mL in type 1 diabetes. Diabetes, Obes Metab. 2017;19(7):1032-1039. doi: https://doi.org/10.1111/dom.12938

22. Rosenstock J, Cheng A, Ritzel R, et al. More similarities than differences testing insulin glargine 300 Units/mL versus insulin degludec 100 Units/mL in insulin-naive type 2 diabetes: the randomized head-to-head BRIGHT trial. Diabetes Care. 2018;41(10):2147-2154. doi: https://doi.org/10.2337/dc18-0559

23. Philis-Tsimikas A, Klonoff DC, Khunti K, et al. Risk of hypoglycaemia with insulin degludec versus insulin glargine U300 in insulintreated patients with type 2 diabetes: the randomised, headto-head CONCLUDE trial. Diabetologia. 2020;63(4):698-710. doi: https://doi.org/10.1007/s00125-019-05080-9

24. Kjeldsen TB, Hubálek F, Hjørringgaard CU, et al. Molecular Engineering of Insulin Icodec, the First Acylated Insulin Analog for Once-Weekly Administration in Humans. J Med Chem. 2021;64(13):8942-8950. doi: https://doi.org/10.1021/acs.jmedchem.1c00257

25. Nishimura E, Pridal L, Glendorf T, et al. Molecular and pharmacological characterization of insulin icodec: a new basal insulin analog designed for once-weekly dosing. BMJ Open Diabetes Res Care. 2021;9(1):e002301. doi: https://doi.org/10.1136/bmjdrc-2021-002301

26. Rosenstock J, Bajaj HS, Janež A, et al. Once-weekly insulin for type 2 diabetes without previous insulin treatment. N Engl J Med. 2020;383(22):2107-2116. doi: https://doi.org/10.1056/NEJMoa2022474

27. Kazda CM, Chien J, Zhang Q, et al. 192-OR: Glycemic control with once-weekly Basal Insulin Fc (BIF) in persons with Type 2 Diabetes Mellitus (T2DM) using Continuous Glucose Monitoring (CGM) in a phase 2 study. Diabetes. 2021;70(S1):2107-2116. doi: https://doi.org/10.2337/db21-192-OR

28. Andersen G, Meiffren G, Famulla S, et al. ADO09, a co‐formulation of the amylin analogue pramlintide and the insulin analogue A21G, lowers postprandial blood glucose versus insulin lispro in type 1 diabetes. Diabetes, Obes Metab. 2021;23(4):961-970. doi: https://doi.org/10.1111/dom.14302

29. Cernea S, Raz I. Insulin therapy: future perspectives. Am J Ther. 2020;27(1):e121-e132. doi: https://doi.org/10.1097/MJT.0000000000001076

30. McGill JB, Weiss D, Grant M, et al. Understanding inhaled Technosphere Insulin: Results of an early randomized trial in type 1 diabetes mellitus. J Diabetes. 2021;13(2):164-172. doi: https://doi.org/10.1111/1753-0407.13099

31. Seaquist ER, Blonde L, McGill JB, et al. Hypoglycaemia is reduced with use of inhaled Technosphere ® Insulin relative to insulin aspart in type 1 diabetes mellitus. Diabet Med. 2020;37(5):752-759. doi: https://doi.org/10.1111/dme.14202

32. Gedawy A, Martinez J, Al-Salami H, Dass CR. Oral insulin delivery: existing barriers and current counter-strategies. J Pharm Pharmacol. 2018;70(2):197-213. doi: https://doi.org/10.1111/jphp.12852

33. Kaur G, Arora M, Ravi Kumar MNV. Oral drug delivery technologies—a decade of developments. J Pharmacol Exp Ther. 2019;370(3):529-543. doi: https://doi.org/10.1124/jpet.118.255828

34. Brayden DJ, Hill TA, Fairlie DP, et al. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev. 2020;(157):2-36. doi: https://doi.org/10.1016/j.addr.2020.05.007

35. Eldor R, Neutel J, Homer K, Kidron M. Efficacy and safety of 28‐day treatment with oral insulin (ORMD‐0801) in patients with type 2 diabetes: A randomized, placebocontrolled trial. Diabetes, Obes Metab. 2021;23(11):2529-2538. doi: https://doi.org/10.1111/dom.14499

36. Halberg IB, Lyby K, Wassermann K, et al. Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: a randomised, double-blind, phase 2 trial. Lancet Diabetes Endocrinol. 2019;7(3):179-188. doi: https://doi.org/10.1016/S2213-8587(18)30372-3

37. Wang A, Fan W, Yang T, et al. Liver‐target and glucose‐responsive polymersomes toward mimicking endogenous insulin secretion with improved hepatic glucose utilization. Adv Funct Mater. 2020;30(13):1-15. doi: https://doi.org/10.1002/adfm.201910168

38. Abramson A, Caffarel-Salvador E, Khang M, et al. An ingestible selforienting system for oral delivery of macromolecules. Science (80-). 2019;363(6427):611-615. doi: https://doi.org/10.1126/science.aau2277

39. Klonoff D, Bode B, Cohen N, et al. Divergent hypoglycemic effects of hepatic-directed prandial insulin: A 6-month phase 2b study in type 1 diabetes. Diabetes Care. 2019;42(11):2154-2157. doi: https://doi.org/10.2337/dc19-0152

40. Iacovacci V, Tamadon I, Kauffmann EF, et al. A fully implantable device for intraperitoneal drug delivery refilled by ingestible capsules. Sci Robot. 2021;6(57). doi: https://doi.org/10.1126/scirobotics.abh3328

41. Hua S. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Front Pharmacol. 2019;(10):1328. doi: https://doi.org/10.3389/fphar.2019.01328

42. Marciello M, Rossi S, Caramella C, Remuñán-López C. Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydr Polym. 2017;(170):43-51. doi: https://doi.org/10.1016/j.carbpol.2017.04.051

43. Purohit TJ, Hanning SM, Wu Z. Advances in rectal drug delivery systems. Pharm Dev Technol. 2018;23(10):942-952. doi: https://doi.org/10.1080/10837450.2018.1484766

44. Xue J, Shi Y, Li C, et al. Methylcellulose and polyacrylate binary hydrogels used as rectal suppository to prevent type I diabetes. Colloids Surfaces B Biointerfaces. 2018;(172):37-42. doi: https://doi.org/10.1016/j.colsurfb.2018.08.021

45. Li QY, Zhang JN, Chen BZ, et al. A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Adv. 2017;7(25):15408-15415. doi: https://doi.org/10.1039/C6RA26759A

46. Yu W, Jiang G, Liu D, et al. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Mater Sci Eng C. 2017;71:725-734. doi: https://doi.org/10.1016/j.msec.2016.10.063

47. Sugumar V, Ang KP, Alshanon AF, et al. A comprehensive review of the evolution of insulin development and its delivery method. Pharmaceutics. 2022;14(7):1406. doi: https://doi.org/10.3390/pharmaceutics14071406

48. Hoeg-Jensen T. Review: glucose-sensitive insulin. Mol Metab. 2021;46:101107. doi: https://doi.org/10.1016/j.molmet.2020.101107

49. Dedov II, Shestakova MV, Vikulova OK, et al. Epidemiological characteristics of diabetes mellitus in the Russian Federation: clinical and statistical analysis according to the Federal diabetes register data of 01.01.2021. Diabetes mellitus. 2021;24(3):204-221. (In Russ.). doi: https://doi.org/10.14341/DM12759

50. Jacober SJ, Prince MJ, Beals JM, et al. Basal insulin peglispro: Overview of a novel long‐acting insulin with reduced peripheral effect resulting in a hepato‐preferential action. Diabetes, Obes Metab. 2016;18(S2):3-16. doi: https://doi.org/10.1111/dom.12744

51. Riddle MC. Lessons from peglispro: IMAGINE how to improve drug development and affordability. Diabetes Care. 2016;39(4):499-501. doi: https://doi.org/10.2337/dc15-2754

52. Mathieu C, Martens PJ, Vangoitsenhoven R. One hundred years of insulin therapy. Nat Rev Endocrinol. 2021;17(12):715-725. doi: https://doi.org/10.1038/s41574-021-00542-w


Supplementary files

1. Рисунок 1. Паракринные взаимодействия β-, α- и δ-клеток островков поджелудочной железы.
Subject
Type Исследовательские инструменты
View (624KB)    
Indexing metadata ▾
2. Рисунок 2. Эволюция инсулинотерапии: от Лангерганса до наших дней [38].
Subject
Type Исследовательские инструменты
View (412KB)    
Indexing metadata ▾
3. Рисунок 3. Структуры доступных аналогов инсулина (А) и механизм пролонгации их действия (Б).
Subject
Type Исследовательские инструменты
View (812KB)    
Indexing metadata ▾
4. Рисунок 4. Альтернативные способы доставки инсулина
Subject
Type Исследовательские инструменты
View (342KB)    
Indexing metadata ▾

Review

For citations:


Kurkin D.V., Bakulin D.A., Robertus A.I., Kolosov Yu.A., Krysanov I.S., Morkovin E.I., Strygin A.V., Gorbunova J.V., Makarenko I.E., Drai R.V., Makarova E.V., Pavlova E.V., Kudrin R.А., Ivanova O.V. Evolution of insulin therapy: past, present, future. Problems of Endocrinology. 2023;69(6):86-101. (In Russ.) https://doi.org/10.14341/probl13251

Views: 5793


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)