Preview

Problems of Endocrinology

Advanced search

Molecular genetic abnormalities in ACTH-secreting pituitary tumors (corticotropinomas): fundamental research and prospects for use in clinical practice

https://doi.org/10.14341/probl13273

Abstract

In recent years, a large number of studies have been carried out to research molecular genetic abnormalities in ACTH-­secreting pituitary tumors. This review presents a comprehensive analysis of exome studies results (germline and somatic mutations, chromosomal abnormalities in corticotropinomas which developed as part of hereditary syndromes MEN 1, 2, 4, DICER1, Carney complex etc., and isolated tumors, respectively) and transcriptome (specific genes expression profiles in hormonally active and inactive corticotropinomas, regulation of cell cycles and signal pathways). Modern technologies (next-generation sequencing — NGS) allow us to study the state of the microRNAome, DNA methylome and inactive chromatin sites, in particular using RNA sequencing. Thus, a wide range of fundamental studies is shown, the results of which allow us to identify and comprehend the key previously known and new pathogenesis mechanisms and biomarkers of corticotropinomas. The characteristics of the most promising molecular genetic factors that can be used in clinical practice for screening and earlier diagnosis of hereditary syndromes and isolated corticotropinomas, differential diagnosis of various forms of endogenous hypercorticism, sensitivity to existing and potential therapies and personalized outcome determination of Cushing`s disease.

About the Author

A. M. Lapshina
Endocrinology Research Centre
Russian Federation

Anastasya M. Lapshina, MD, PhD

11 Dm.Ulyanova street, 117036 Moscow, Russia



References

1. Vergès B, Boureille F, Goudet P, et al. Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. Journal of Clinical Endocrinology and Metabolism. 2002;87(2):457-465. doi: https://doi.org/10.1210/jcem.87.2.8145

2. Asa SL, Mete O, Perry A, Osamura RY. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocrine Pathology. 2022;33(1):6-26. doi: https://doi.org/10.1007/s12022-022-09703-7

3. Naziat A, Karavitaki N, Thakker R, et al. Confusing genes: a patient with MEN2A and Cushing’s disease. Clinical Endocrinology. 2013;78(6):966-968. doi: https://doi.org/10.1111/cen.12072

4. Kasturi K, Fernandes L, Quezado M, et al. Cushing disease in a patient with multiple endocrine neoplasia type 2B. Journal of Clinical and Translational Endocrinology Case Reports. 2017;4:1-4. doi: https://doi.org/10.1016/j.jecr.2017.02.001

5. Frederiksen A, Rossing M, Hermann P, et al. Clinical Features of Multiple Endocrine Neoplasia Type 4: Novel Pathogenic Variant and Review of Published Cases. Journal of Clinical Endocrinology and Metabolism. 2019,104(9):3637–3646. doi: https://doi.org/10.1210/jc.2019-00082

6. Scheithauer BW, Kovacs K, Horvath E, et al. Pituitary blastoma. Acta Neuropathologica. 2008;116:657–666. doi: https://doi.org/10.1007/s00401-008-0388-9

7. Chong AS, Han H, Albrecht S, et al. DICER1 syndrome in a young adult with pituitary blastoma. Acta Neuropathologica. 2021;142(6):1071-1076. doi: https://doi.org/10.1007/s00401-021-02378-0

8. Cazabat L, Bouligand J, Salenave S, et al. Germline AIP Mutations in Apparently Sporadic Pituitary Adenomas: Prevalence in a Prospective Single-Center Cohort of 443 Patients. Journal of Clinical Endocrinology and Metabolism. 2012;97(4):E663–E670. doi: https://doi.org/10.1210/jc.2011-2291

9. Hernández-Ramírez LC, Tatsi C, Lodish MB, et al. Corticotropinoma as a component of carney complex. Journal of the Endocrine Society. 2017;1(7):918-925. doi: https://doi.org/10.1210/js.2017-00231

10. Loughrey PB, Baker G, Herron B, et al. Invasive ACTH-producing pituitary gland neoplasm secondary to MSH2 mutation. Cancer Genetics. 2021;256-257:36-39. doi: https://doi.org/10.1016/j.cancergen.2021.03.008

11. Bengtsson D, Joost P, Aravidis C, et al. Corticotroph pituitary carcinoma in a patient with lynch syndrome (LS) and pituitary tumors in a Nationwide LS cohort. Journal of Clinical Endocrinology and Metabolism. 2017;102(11):3928-3932. doi: https://doi.org/10.1210/jc.2017-01401

12. Theodoropoulou M, Reincke M, Fassnacht M, Komada M. Decoding the genetic basis of Cushing’s disease: USP8 in the spotlight. European Journal of Endocrinology. 2015;173: M73–M83. doi: https://doi.org/10.1530/EJE-15-0320

13. Wanichi IQ, Mariani BMP, Frassetto FP. Cushing’s disease due to somatic USP8 mutations: a systematic review and metaanalysis. Pituitary. 2019;22(4):435-442. doi: https://doi.org/10.1007/s11102-019-00973-9

14. Faucz FR, Tirosh A, Tatsi C, et al. Somatic USP8 gene mutations are a common cause of pediatric Cushing disease. Journal of Clinical Endocrinology and Metabolism. 2017;102(8):2836-2843. doi: https://doi.org/10.1210/jc.2017-00161

15. Cohen M, Persky R, Stegemann R, et al. Germline USP8 mutation associated with pediatric Cushing disease and other clinical features: a new syndrome. Journal of Clinical Endocrinology and Metabolism. 2019;104(10):4676-4682. doi: https://doi.org/10.1210/jc.2019-00697

16. Theodoropoulou M, Reincke M. Genetics of Cushing’s disease: from the lab to clinical practice. Pituitary. 2022;25:689–692. doi: https://doi.org/10.1007/s11102-022-01253-9

17. Treppiedi D, Di Muro G, Marra G, et al. USP8 inhibitor RA-9 reduces ACTH release and cell growth in tumor corticotrophs. Endocrine-Related Cancers. 2021;28(8):573-582. doi: https://doi.org/10.1530/ERC-21-0093

18. Simon J, Theodoropoulou M. Genetics of Cushing’s disease. Journal of Neuroendocrinology. 2022;e13148. doi: https://doi.org/10.1111/jne.13148

19. Sbiera S, Perez-Rivas LG, Taranets L, et al. Driver mutations in USP8 wild-type Cushing’s disease. Neuro Oncology. 2019;21(10):1273–1283. doi: https://doi.org/10.1093/neuonc/noz109

20. Uzilov AV, Taik P, Cheesman KhC. USP8 and TP53 drivers are associated with CNV in a corticotroph adenoma cohort enriched for aggressive tumors. The Journal of Clinical Endocrinology & Metabolism. 2021;106(3):826–842. doi: https://doi.org/10.1210/clinem/dgaa853

21. Clynes D, Jelinska C, Xella B, et al. Suppression of the alternative lengthening of telomere pathway by the chromatin remodeling factor ATRX. Nature Communication. 2015;6:7538. doi: https://doi.org/10.1038/ncomms8538

22. Molenaar JJ, Koster J, Zwijnenburg DA, et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature. 2012;483(7391):589-593. doi: https://doi.org/10.1038/nature10910

23. Fishbein L, Khare S, Wubbenhorst B, et al. Whole exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nature Communications. 2015;6:6140. doi: https://doi.org/10.1038/ncomms7140.

24. Job S, Draskovic I, Burnichon N, et al. Telomerase activation and ATRX mutations are independent risk factors for metastatic pheochromocytoma and paraganglioma. Clinical Cancer Research. 2019;25(2):760-770. doi: https://doi.org/10.1158/1078-0432.CCR-18-0139

25. Singhi AD, Liu TC, Roncaioli JL, et al. Alternative lengthening of telomeres and loss of DAXX/ATRX expression predicts metastatic disease and poor survival in patients with pancreatic neuroendocrine tumors. Clinical Cancer Research. 2017;23(2):600-609. doi: https://doi.org/10.1158/1078-0432.CCR-16-1113.

26. Casar-Borota O, Botling J, Granberg D, et al. Serotonin, ATRX, and DAXX expression in pituitary adenomas: markers in the differential diagnosis of neuroendocrine tumors of the sellar region. American Journal of Surgical Pathology. 2017;41(9):1238-1246. doi: https://doi.org/10.1097/PAS.0000000000000908

27. Casar-Borota O, Boldt HB, Engstrom BE, et al. Corticotroph aggressive pituitary tumors and carcinomas frequently harbor ATRX mutations. The Journal of Clinical Endocrinology & Metabolism. 2020;20(20):1–12. doi: https://doi.org/10.1210/clinem/dgaa749

28. Vetrivel Sh, Zhang R, Engel M, et al. Circulating microRNA Expression in Cushing’s Syndrome. Frontiers in Endocrinology. 2021;12. doi: https://doi.org/10.3389/fendo.2021.620012

29. Malygina AA. Belaya ZhE, Nikitin AG, et al. Differences in plasma mirna levels in inferior petrosal sinus samples of patients with ACTH-dependent Cushing’s syndrome. Problems of Endocrinology. 2021;67(6):18-30. (In Russ). doi: https://doi.org/10.14341/probl12817

30. Belaya Zh, Khandaeva P, Nonn L, et al. Circulating Plasma microRNA to Differentiate Cushing’s Disease From Ectopic ACTH Syndrome. Frontiers in Endocrinology. 2020;11:331. doi: https://doi.org/10.3389/fendo.2020.00331

31. Garbicz F, Mehlich D, Rak B. Increased expression of the microRNA 106b~25 cluster and its host gene MCM7 in corticotroph pituitary adenomas is associated with tumor invasion and Crooke’s cell morphology. Pituitary. 2017;20:450–463. doi: https://doi.org/10.1007/s11102-017-0805-y

32. Peculis R, Niedra H, Rovite V. Large scale molecular studies of pituitary neuroendocrine tumors: novel markers, mechanisms and translational perspectives. Cancers. 2021;13: 1395. doi: https://doi.org/10.3390/cancers13061395

33. Neou M, Villa C, Armignacco R, et al. Pangenomic classification of pituitary neuroendocrine tumors. Cancer Cell. 2020,37(1):123-134.e5. doi: https://doi.org/10. 1016/j.ccell. 2019.11.002

34. Salomon MP, Wang X, Marzese DM, et al. The epigenomic landscape of pituitary adenomas reveals specific alterations and differentiates among acromegaly, Cushing’s disease and endocrine-inactive subtypes. Clinical Cancer Research. 2018;24(17):4126–4136. doi: https://doi.org/10.1158/1078-0432.CCR-17-2206


Supplementary files

1. Figure 1. Multi-omics methods for studying corticotropins.
Subject
Type Исследовательские инструменты
View (352KB)    
Indexing metadata ▾

Review

For citations:


Lapshina A.M. Molecular genetic abnormalities in ACTH-secreting pituitary tumors (corticotropinomas): fundamental research and prospects for use in clinical practice. Problems of Endocrinology. 2024;70(3):23-30. (In Russ.) https://doi.org/10.14341/probl13273

Views: 718


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)