Preview

Problems of Endocrinology

Advanced search

Prospects for the application of convolutional neural networks in the cytological diagnosis of thyroid nodules

https://doi.org/10.14341/probl13475

Abstract

AIM. Analysis and assessment of the role of convolutional neural networks in the cytological diagnosis of the thyroid pathology, exploring their potential for increasing the accuracy and automation of diagnostic processes.

METHODS. Analysis of literature from Pubmed, Google Scholar and the scientific electronic library elibrary.ru using the keywords «thyroid», «cytology», «cytopathology», «fine-needle aspiration biopsy», «neural network» and «convolutional neural network». 12 articles published from 2018 to 2023 were selected for analysis.

RESULTS. The paper discusses the basic principles of the design of convolutional neural networks and the metrics that are used to assess their quality. An analysis of studies on the use of convolutional neural networks in the cytological diagnosis of the thyroid pathology was performed. According to the results, these neural networks classify pathological conditions with high accuracy and sensitivity, comparable to the work of an experienced cytologist. The accuracy of classification of papillary carcinoma can reach 99.7%. However, the lack of uniform standards for preparing images for training neural networks, the insufficient number of studies using multicenter data, and the narrow diagnostic range of available neural network models still limit the implementation of such AI systems in cytological diagnostic practice.

CONCLUSION. The available research results on various options for using convolutional neural networks in the cytological diagnosis of the thyroid pathology have every chance of becoming the initiator of a serious paradigm shift in conventional cytopathology towards digital and computational cytopathology, in which the main functions will be performed by AI systems.

About the Authors

M. V. Solopov
V.K. Gusak Institute of Emergency and Reconstructive Surgery
Russian Federation

Maksim V. Solopov

4 Aravijskaya street, apt. 158, 283016 Donetsk



A. S. Kavelina
V.K. Gusak Institute of Emergency and Reconstructive Surgery
Russian Federation

Anna S. Kavelina, MD, PhD

Donetsk

Scopus Author ID: 57190676738



A. G. Popandopulo
V.K. Gusak Institute of Emergency and Reconstructive Surgery
Russian Federation

Andrey G. Popandopulo, MD, PhD, Professor

Donetsk



V. V. Turchin
V.K. Gusak Institute of Emergency and Reconstructive Surgery
Russian Federation

Victor V. Turchin

Donetsk



R. V. Ishchenko
V.K. Gusak Institute of Emergency and Reconstructive Surgery
Russian Federation

Roman V. Ishchenko, MD, PhD

Donetsk



D. A. Filimonov
V.K. Gusak Institute of Emergency and Reconstructive Surgery
Russian Federation

Dmitry A. Filimonov, MD, PhD

Donetsk



References

1. Tran NQ, Le BH, Hoang CK, Nguyen HT, Thai TT. Prevalence of thyroid nodules and associated clinical characteristics: findings from a large sample of people undergoing health checkups at a university hospital in Vietnam. Risk Manag Healthc Policy. 2023;16:899-907. doi: https://doi.org/10.2147/RMHP.S410964

2. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1-133. doi: https://doi.org/10.1089/THY.2015.0020

3. Filetti S, Durante C, Hartl D, et al. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(12):1856-1883. doi: https://doi.org/10.1093/ANNONC/MDZ400

4. The Ministry of Health of the Russian Federation. Clinical guidelines «Differentiated thyroid cancer». (in Russ.) Available at: https://cr.minzdrav.gov.ru/schema/329_1. Link active on 13.08.2024

5. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol. 2012;56(4):333-339. doi: https://doi.org/10.1159/000339959

6. Kezlarian B, Lin O. Artificial intelligence in thyroid fine needle aspiration biopsies. Acta Cytol. 2021;65(4):324-329. doi: https://doi.org/10.1159/000512097

7. Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, Vanderlaan PA. The 2023 Bethesda system for reporting thyroid cytopathology. Thyroid. 2023;33(9):1039-1044. doi: https://doi.org/10.1089/THY.2023.0141

8. Vuong HG, Ngo HTT, Bychkov A, et al. Differences in surgical resection rate and risk of malignancy in thyroid cytopathology practice between Western and Asian countries: A systematic review and meta-analysis. Cancer Cytopathol. 2020;128(4):238-249. doi: https://doi.org/10.1002/CNCY.22228

9. Faquin WC, Wong LQ, Afrogheh AH, et al. Impact of reclassifying noninvasive follicular variant of papillary thyroid carcinoma on the risk of malignancy in the Bethesda system for reporting thyroid cytopathology. Cancer Cytopathol. 2016;124(3):181-187. doi: https://doi.org/10.1002/CNCY.21631

10. Van Den Heede K, Tolley NS, Di Marco AN, Palazzo FF. Differentiated thyroid cancer: A health economic review. Cancers (Basel). 2021;13(9):2253. doi: https://doi.org/10.3390/CANCERS13092253/S1

11. Hirokawa M, Niioka H, Suzuki A, et al. Application of deep learning as an ancillary diagnostic tool for thyroid FNA cytology. Cancer Cytopathol. 2023;131(4):217-225. doi: https://doi.org/10.1002/CNCY.22669

12. Dov D, Elliott Range D, Cohen J, et al. Deep-learning-based screening and ancillary testing for thyroid cytopathology. Am J Pathol. 2023;193(9):1185-1194. doi: https://doi.org/10.1016/J.AJPATH.2023.05.011

13. Harrison JH, Gilbertson JR, Hanna MG, et al. Introduction to artificial intelligence and machine learning for pathology. Arch Pathol Lab Med. 2021;145(10):1228-1254. doi: https://doi.org/10.5858/ARPA.2020-0541-CP

14. Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface. 2018;15(141):20170387. doi: https://doi.org/10.1098/RSIF.2017.0387

15. Habchi Y, Himeur Y, Kheddar H, et al. AI in thyroid cancer diagnosis: techniques, trends, and future directions. Systems. 2023;11(10):519. doi: https://doi.org/10.3390/systems11100519

16. Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968;195(1):215-243. doi: https://doi.org/10.1113/JPHYSIOL.1968.SP008455

17. Alabrak MMA, Megahed M, Alkhouly AA, et al. Artificial intelligence role in subclassifying cytology of thyroid follicular neoplasm. Asian Pac J Cancer Prev. 2023;24(4):1379-1387. doi: https://doi.org/10.31557/APJCP.2023.24.4.1379

18. Bakaev M, Heil S, Khvorostov V, Gaedke M. How many data does machine learning in human–computer interaction need?: re-estimating the dataset size for convolutional neural network-based models of visual perception. IT Prof. 2023;25(2):23-29. doi: https://doi.org/10.1109/MITP.2023.3262923

19. Sanyal P, Dr TM, Barui S, Das A, Gangopadhyay P. Artificial intelligence in cytopathology: a neural network to identify papillary carcinoma on thyroid fine-needle aspiration cytology smears. J Pathol Inform. 2018;9:43. doi: https://doi.org/10.4103/JPI.JPI_43_18

20. Mall PK, Singh PK, Srivastav S, et al. A comprehensive review of deep neural networks for medical image processing: Recent developments and future opportunities. Healthc Anal. 2023;4:100216. doi: https://doi.org/10.1016/J.HEALTH.2023.100216

21. Mulmule PV, Kanphade RD. Classification of cervical cytology overlapping cell images with transfer learning architectures. Biomed Pharmacol J. 2022;15(1). doi: https://doi.org/10.13005/bpj/2364

22. Guan Q, Wang Y, Ping B, et al. Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study. J Cancer. 2019;10(20):4876. doi: https://doi.org/10.7150/JCA.28769

23. Dov D, Kovalsky SZ, Cohen J, Range DE, Henao R, Carin L. Thyroid cancer malignancy prediction from whole slide cytopathology images. Proc Mach Learn Res. 2019;106:553-570

24. Dov D, Kovalsky SZ, Assaad S, et al. Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathology images. Med Image Anal. 2021;67:101814e. doi: https://doi.org/10.1016/J.MEDIA.2020.101814

25. Elliott Range DD, Dov D, Kovalsky SZ, Henao R, Carin L, Cohen J. Application of a machine learning algorithm to predict malignancy in thyroid cytopathology. Cancer Cytopathol. 2020;128(4):287-295. doi: https://doi.org/10.1002/CNCY.22238

26. Dov D, Kovalsky SZ, Feng Q, et al. Use of machine learning-based software for the screening of thyroid cytopathology whole slide images. Arch Pathol Lab Med. 2022;146(7):872-878. doi: https://doi.org/10.5858/ARPA.2020-0712-OA

27. Duan W, Gao L, Liu J, et al. Computer-assisted fine-needle aspiration cytology of thyroid using two-stage refined convolutional neural network. Electronics. 2022;11(24):4089. doi: https://doi.org/10.3390/ELECTRONICS11244089

28. Duc NT, Lee YM, Park JH, Lee B. An ensemble deep learning for automatic prediction of papillary thyroid carcinoma using fine needle aspiration cytology. Expert Syst Appl. 2022;188(4):115927. doi: https://doi.org/10.1016/j.eswa.2021.115927

29. Reinhard E, Ashikhmin M, Gooch B, Shirley P. Color transfer between images. IEEE Comput Graph Appl. 2001;21(5):34-41. doi: https://doi.org/10.1109/38.946629

30. Houdek D, Cooke-Hubley S, Puttagunta L, Morrish D. Factors affecting thyroid nodule fine needle aspiration non-diagnostic rates: a retrospective association study of 1975 thyroid biopsies. Thyroid Res. 2021;14(1). doi: https://doi.org/10.1186/S13044-021-00093-2

31. Jang J, Kim Y, Westgate B, et al. Screening adequacy of unstained thyroid fine needle aspiration samples using a deep learning-based classifier. Sci Rep. 2023;13(1):13525. doi: https://doi.org/10.1038/S41598-023-40652-1

32. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 2014;74(11):2913-2921. doi: https://doi.org/10.1158/0008-5472.CAN-14-0155


Supplementary files

1. Figure 1. Algorithm for training CNN for cytological diagnosis of thyroid pathology.
Subject свёрточная нейронная сеть; цитодиагностика; щитовидная железа
Type Other
View (800KB)    
Indexing metadata ▾

Review

For citations:


Solopov M.V., Kavelina A.S., Popandopulo A.G., Turchin V.V., Ishchenko R.V., Filimonov D.A. Prospects for the application of convolutional neural networks in the cytological diagnosis of thyroid nodules. Problems of Endocrinology. 2025;71(3):4-13. (In Russ.) https://doi.org/10.14341/probl13475

Views: 146


ISSN 0375-9660 (Print)
ISSN 2308-1430 (Online)