Microcephalic osteodysplastic primordial dwarfism type II (MOPD II): clinical case
https://doi.org/10.14341/probl13517
Abstract
Small for gestational age (SGA) refers to the size of an infant at birth, and is defined as a birth weight and/or birth length below the −2.0 SDS for the gestational age. In approximately 10% of cases, SGA is not compensated for in the postnatal period, with the pathogenesis of this condition being attributed to various monogenic syndromes or chromosomal abnormalities. The difficulty in making a pathogenetic diagnosis in this group of patients is due, on the one hand, to the similarity of phenotypic manifestations in the structure of the disease, on the other hand, to the variability of clinical manifestations within a specific syndrome. Conducting various molecular genetic studies is the main method of diagnosing the form of SGA. Microcephalic osteodysplastic primordial dwarfism type II (MOPD II) is one of the most common genetic variants of SGA, with its phenotypic features including skeletal anomalies and cerebrovascular changes. The disease is caused by biallelic mutations in PCNT gene. This study presents the clinical characteristics of the first patient with microcephalic osteodysplastic primordial dwarfism type II in the Russian Federation. The nucleotide changes detected in the patient have not been previously described in the world literature.
About the Authors
N. A. MakretskayaRussian Federation
Nina A. Makretskaya, MD, PhD
1 Moskvorechye street, 115522 Moscow
N. Y. Kalinchenko
Russian Federation
Nataliya Y. Kalinchenko, MD, PhD
Moscow
A. N. Tiulpakov
Russian Federation
Anatoliy N. Tyulpakov, MD, PhD
Moscow
References
1. Hokken-Koelega ACS, van der Steen M, Boguszewski MCS, Cianfarani S, Dahlgren J, Horikawa R, et al. International Consensus Guideline on Small for Gestational Age: Etiology and Management From Infancy to Early Adulthood. Endocr Rev. 2023;44(3):539-565. doi: https://doi.org/10.1210/endrev/bnad002
2. Albertsson-Wikland K, Karlberg J. Postnatal growth of children born small for gestational age. Acta Paediatr Suppl. 1997;423:193-5. doi: https://doi.org/10.1111/j.1651-2227.1997.tb18413.x
3. Majewski F, et al. Studies of microcephalic primordial dwarfism II: the osteodysplastic Type II of primordial dwarfism. Am J Med Genet. 1982;12(1):23–35. doi: https://doi.org/10.1002/ajmg.1320120104
4. Rauch A, Thiel CT, Schindler D, Wick U, Crow YJ, et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science. 2008;319(5864):816-9. doi: https://doi.org/10.1126/science.1151174
5. Griffith E, Walker S, Martin CA, Vagnarelli P, Stiff T, et al. Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nat Genet. 2008;40(2):232-6. doi: https://doi.org/10.1038/ng.2007.80
6. Nagaeva EV, Shiryaeva TY, Peterkova VA, Bezlepkina OB, Tiulpakov AN, et al. Russian national consensus. Diagnostics and treatment of hypopituitarism in children and adolescences. Problems of Endocrinology. 2018;64(6):402-411. (In Russ.). doi: https://doi.org/10.14341/probl10091
7. Mennella V, Keszthelyi B, McDonald KL, Chhun B, Kan F, et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat Cell Biol. 2012;14(11):1159-68. doi: https://doi.org/10.1038/ncb2597
8. Barbelanne M, Tsang WY. Molecular and cellular basis of autosomal recessive primary microcephaly. Biomed Res Int. 2014;2014:547986. doi: https://doi.org/10.1155/2014/547986
9. Chen CT, Hehnly H, Yu Q, Farkas D, Zheng G, et al. A unique set of centrosome proteins requires pericentrin for spindle-pole localization and spindle orientation. Curr Biol. 2014;24(19):2327-2334. doi: https://doi.org/10.1016/j.cub.2014.08.029
10. Hall JG, Flora C, Scott CI Jr, Pauli RM, Tanaka KI. Majewski osteodysplastic primordial dwarfism type II (MOPD II): natural history and clinical findings. Am J Med Genet A. 2004;130A(1):55-72. doi: https://doi.org/10.1002/ajmg.a.30203
11. Bober MB, Niiler T, Duker AL, Murray JE, Ketterer T, et al. Growth in individuals with Majewski osteodysplastic primordial dwarfism type II caused by pericentrin mutations. Am J Med Genet A. 2012;158A(11):2719-25. doi: https://doi.org/10.1002/ajmg.a.35447
12. Kantaputra P, Tanpaiboon P, Porntaveetus T, Ohazama A, Sharpe P, et al. The smallest teeth in the world are caused by mutations in the PCNT gene. Am J Med Genet A. 2011;155A(6):1398-403. doi: https://doi.org/10.1002/ajmg.a.33984
13. Huang-Doran I, Bicknell LS, Finucane FM, Rocha N, Porter KM, et al; Majewski Osteodysplastic Primordial Dwarfism Study Group. Genetic defects in human pericentrin are associated with severe insulin resistance and diabetes. Diabetes. 2011;60(3):925-35. doi: https://doi.org/10.2337/db10-1334
14. Duker AL, Kinderman D, Jordan C, Niiler T, Baker-Smith CM, et al. Microcephalic osteodysplastic primordial dwarfism type II is associated with global vascular disease. Orphanet J Rare Dis. 2021;16(1):231. doi: https://doi.org/10.1186/s13023-021-01852-y
15. Nishimura G, Hasegawa T, Fujino M, Hori N, Tomita Y. Microcephalic osteodysplastic primordial short stature type II with cafe-au-lait spots and moyamoya disease. Am J Med Genet A. 2003;117A(3):299-301. doi: https://doi.org/10.1002/ajmg.a.10230
16. Perry LD, Robertson F, Ganesan V. Screening for cerebrovascular disease in microcephalic osteodysplastic primordial dwarfism type II (MOPD II): an evidence-based proposal. Pediatr Neurol. 2013;48(4):294-8. doi: https://doi.org/10.1016/j.pediatrneurol.2012.12.010
17. Waldron JS, Hetts SW, Armstrong-Wells J, Dowd CF, Fullerton HJ, et al. Multiple intracranial aneurysms and moyamoya disease associated with microcephalic osteodysplastic primordial dwarfism type II: surgical considerations. J Neurosurg Pediatr. 2009;4(5):439-44. doi: https://doi.org/10.3171/2009.6.PEDS08137
18. Unal S, Alanay Y, Cetin M, Boduroglu K, Utine E, et al. Striking hematological abnormalities in patients with microcephalic osteodysplastic primordial dwarfism type II (MOPD II): a potential role of pericentrin in hematopoiesis. Pediatr Blood Cancer. 2014;61(2):302-5. doi: https://doi.org/10.1002/pbc.24783
19. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. doi: https://doi.org/10.1038/gim.2015.30
20. Ryzhkova OP, Kardymon OL, Prohorchuk EB, Konovalov FA, et al. Guidelines for the interpretation of human DNA sequence data from massively parallel sequencing (MPS) methods (2018 revision, version 2). Medical Genetics. 2019;18(2):3-23. (In Russ.) doi: https://doi.org/10.25557/2073-7998.2019.02.3-23
Supplementary files
|
1. Figure 1. Patient's growth curve with height and bone age data. Notes: Abscissa axis – proband's age, years; ordinate axis – proband's height, cm; Fa – father's height; Mo – mother's height; TH – proband's target height (calculated in the Growth analyser program). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(372KB)
|
Indexing metadata ▾ |
Review
For citations:
Makretskaya N.A., Kalinchenko N.Y., Tiulpakov A.N. Microcephalic osteodysplastic primordial dwarfism type II (MOPD II): clinical case. Problems of Endocrinology. 2025;71(3):34-38. (In Russ.) https://doi.org/10.14341/probl13517

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).